BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38064734)

  • 41. Synthesis of PVDF membrane loaded with wrinkled Au NPs for sensitive detection of R6G.
    Wang J; Lin Q; Wang D; Yu H; He W; Jiang W; Liu C; Zhu E; Li H
    Talanta; 2022 Nov; 249():123676. PubMed ID: 35738206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Composite Structure Based on Gold-Nanoparticle Layer and HMM for Surface-Enhanced Raman Spectroscopy Analysis.
    Wang Z; Huo Y; Ning T; Liu R; Zha Z; Shafi M; Li C; Li S; Xing K; Zhang R; Xu S; Li Z; Jiang S
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33652800
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection.
    Wen P; Yang F; Ge C; Li S; Xu Y; Chen L
    Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34161934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone).
    Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H
    Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding the Plasmonic Effect of Enhanced Photodegradation with Au Nanoparticle Decorated ZnO Nanosheet Arrays under Visible Light Irradiation.
    Wang J; Liu D; Yuan S; Gao B; Cheng L; Zhang Y; Chen K; Chen A; Li L
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Target-Triggered Catalytic Hairpin Assembly-Induced Core-Satellite Nanostructures for High-Sensitive "Off-to-On" SERS Detection of Intracellular MicroRNA.
    Liu C; Chen C; Li S; Dong H; Dai W; Xu T; Liu Y; Yang F; Zhang X
    Anal Chem; 2018 Sep; 90(17):10591-10599. PubMed ID: 30058321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the detection efficacy of advanced bimetallic plasmonic nanoparticles for heavy metals, hazardous materials and pesticides of leachate in contaminated groundwater.
    Aarthi A; Bindhu MR; Umadevi M; Parimaladevi R; Sathe GV; Al-Mohaimeed AM; Elshikh MS; Balasubramanian B
    Environ Res; 2021 Oct; 201():111590. PubMed ID: 34181923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic-plasmonic Ni@Au core-shell nanoparticle arrays and their SERS properties.
    Wang L; Wang Z; Li L; Zhang J; Liu J; Hu J; Wu X; Weng Z; Chu X; Li J; Qiao Z
    RSC Adv; 2020 Jan; 10(5):2661-2669. PubMed ID: 35496119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A photochemical approach to anchor Au NPs on MXene as a prominent SERS substrate for ultrasensitive detection of chlorpromazine.
    Barveen NR; Wang TJ; Chang YH
    Mikrochim Acta; 2021 Dec; 189(1):16. PubMed ID: 34873648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring.
    Wang L; Patskovsky S; Gauthier-Soumis B; Meunier M
    Small; 2022 Jan; 18(1):e2105209. PubMed ID: 34761520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface-Enhanced Raman Spectroscopy (SERS) Investigation of a 3D Plasmonic Architecture Utilizing Ag Nanoparticles-Embedded Functionalized Carbon Nanowall.
    Kim C; Hong B; Choi W
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Room-temperature sensor based on surface-enhanced Raman spectroscopy.
    Yang KH; Mai FD; Yu CC; Liu YC
    Analyst; 2014 Oct; 139(20):5164-9. PubMed ID: 25112170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SERS-Active Substrate with Collective Amplification Design for Trace Analysis of Pesticides.
    Sitjar J; Liao JD; Lee H; Liu BH; Fu WE
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film.
    Wang J; Qiu C; Mu X; Pang H; Chen X; Liu D
    Talanta; 2020 Apr; 210():120631. PubMed ID: 31987213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering.
    Sun AY; Lee YC; Chang SW; Chen SL; Wang HC; Wan D; Chen HL
    Anal Chem; 2021 Mar; 93(9):4299-4307. PubMed ID: 33635644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-sustainable and recyclable ternary Au@Cu
    Wu T; Zheng H; Kou Y; Su X; Kadasala NR; Gao M; Chen L; Han D; Liu Y; Yang J
    Microsyst Nanoeng; 2021; 7():23. PubMed ID: 34567737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mxenes-Au NP Hybrid Plasmonic 2D Microplates in Microfluidics for SERS Detection.
    Chen Z; Liu A; Zhang X; Jiao J; Yuan Y; Huang Y; Yan S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Obtaining Ligand-Free Aqueous Au-Nanoparticles Using Reversible CsPbBr
    Samanta S; Paul S; Debnath T
    Small; 2024 May; 20(19):e2311712. PubMed ID: 38258404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.