These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 38064750)
1. DERnet: a deep neural network for end-to-end reconstruction in magnetic particle imaging. Peng Z; Yin L; Sun Z; Liang Q; Ma X; An Y; Tian J; Du Y Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38064750 [No Abstract] [Full Text] [Related]
2. Dynamic residual Kaczmarz method for noise reducing reconstruction in magnetic particle imaging. Zhang P; Liu J; Li Y; Zhu T; Yin L; An Y; Zhong J; Hui H; Tian J Phys Med Biol; 2023 Jul; 68(14):. PubMed ID: 37339656 [No Abstract] [Full Text] [Related]
3. DEQ-MPI: A Deep Equilibrium Reconstruction With Learned Consistency for Magnetic Particle Imaging. Gungor A; Askin B; Soydan DA; Top CB; Saritas EU; Cukur T IEEE Trans Med Imaging; 2024 Jan; 43(1):321-334. PubMed ID: 37527298 [TBL] [Abstract][Full Text] [Related]
4. Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging. Wen J; An Y; Shao L; Yin L; Peng Z; Liu Y; Tian J; Du Y Comput Biol Med; 2024 Aug; 178():108783. PubMed ID: 38909446 [TBL] [Abstract][Full Text] [Related]
5. A greedy regularized block Kaczmarz method for accelerating reconstruction in magnetic particle imaging. Shen Y; Zhang L; Zhang H; Li Y; Zhao J; Tian J; Yang G; Hui H Phys Med Biol; 2024 Jul; 69(15):. PubMed ID: 38862003 [No Abstract] [Full Text] [Related]
6. Content-Noise Feature Fusion Neural Network for Image Denoising in Magnetic Particle Imaging Wang T; Zhang L; Wei Z; Shen Y; Tian J; Hui H Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083463 [TBL] [Abstract][Full Text] [Related]
7. Trajectory analysis for field free line magnetic particle imaging. Top CB; Güngör A; Ilbey S; Güven HE Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging. Murase K Med Phys; 2020 Apr; 47(4):1845-1859. PubMed ID: 32003025 [TBL] [Abstract][Full Text] [Related]
9. Neural networks-based regularization for large-scale medical image reconstruction. Kofler A; Haltmeier M; Schaeffter T; Kachelrieß M; Dewey M; Wald C; Kolbitsch C Phys Med Biol; 2020 Jul; 65(13):135003. PubMed ID: 32492660 [TBL] [Abstract][Full Text] [Related]
10. MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction. Zhao J; Shen Y; Liu X; Hou X; Ding X; An Y; Hui H; Tian J; Zhang H Med Phys; 2024 Aug; 51(8):5492-5509. PubMed ID: 38700948 [TBL] [Abstract][Full Text] [Related]
11. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging. Wu X; He B; Gao P; Zhang P; Shang Y; Zhang L; Zhong J; Jiang J; Hui H; Tian J Med Phys; 2023 Apr; 50(4):2354-2371. PubMed ID: 36239207 [TBL] [Abstract][Full Text] [Related]
12. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Dong X; Niu T; Zhu L Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388 [TBL] [Abstract][Full Text] [Related]
13. SPFS: SNR peak-based frequency selection method to alleviate resolution degradation in MPI real-time imaging. Shan S; Zhang C; Cheng M; Qi Y; Yu D; Wildgruber M; Ma X Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38593815 [No Abstract] [Full Text] [Related]
14. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction. Ma G; Zhang Y; Zhao X; Wang T; Li H Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570 [TBL] [Abstract][Full Text] [Related]
15. An adaptive multi-frame parallel iterative method for accelerating real-time magnetic particle imaging reconstruction. Shen Y; Zhang L; Shang Y; Jia G; Yin L; Zhang H; Tian J; Yang G; Hui H Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37890461 [No Abstract] [Full Text] [Related]
16. A wavelet-based sparse row-action method for image reconstruction in magnetic particle imaging. Lieb F; Knopp T Med Phys; 2021 Jul; 48(7):3893-3903. PubMed ID: 33982810 [TBL] [Abstract][Full Text] [Related]
17. A review of advances in imaging methodology in fluorescence molecular tomography. Zhang P; Ma C; Song F; Fan G; Sun Y; Feng Y; Ma X; Liu F; Zhang G Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35276686 [No Abstract] [Full Text] [Related]
18. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction. Zhang P; Li K Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892 [TBL] [Abstract][Full Text] [Related]
19. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging. Liu J; Yang Y; Wernick MN; Pretorius PH; King MA Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782 [TBL] [Abstract][Full Text] [Related]
20. Deep compressed sensing MRI via a gradient-enhanced fusion model. Dai Y; Wang C; Wang H Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]