These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38064786)
1. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment. Ahmad A; van Genuchten CM Water Res; 2024 Feb; 249():120970. PubMed ID: 38064786 [TBL] [Abstract][Full Text] [Related]
2. Groundwater-native Fe(II) oxidation prior to aeration with H Roy M; van Genuchten CM; Rietveld L; van Halem D Water Res; 2022 Sep; 223():119007. PubMed ID: 36044797 [TBL] [Abstract][Full Text] [Related]
3. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. Ahmad A; Heijnen L; de Waal L; Battaglia-Brunet F; Oorthuizen W; Pieterse B; Bhattacharya P; van der Wal A Water Res; 2020 Jul; 178():115826. PubMed ID: 32361349 [TBL] [Abstract][Full Text] [Related]
4. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions. Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402 [TBL] [Abstract][Full Text] [Related]
5. Groundwater As Removal by As(III), Fe(II), and Mn(II) Co-Oxidation: Contrasting As Removal Pathways with O van Genuchten CM; Ahmad A Environ Sci Technol; 2020 Dec; 54(23):15454-15464. PubMed ID: 33174730 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of Fe and Mn bearing precipitates generated by Fe(II) and Mn(II) co-oxidation with O Ahmad A; van der Wal A; Bhattacharya P; van Genuchten CM Water Res; 2019 Sep; 161():505-516. PubMed ID: 31229731 [TBL] [Abstract][Full Text] [Related]
7. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. van Genuchten CM; Bandaru SR; Surorova E; Amrose SE; Gadgil AJ; Peña J Chemosphere; 2016 Jun; 153():270-9. PubMed ID: 27018519 [TBL] [Abstract][Full Text] [Related]
8. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism. Cheng Y; Zhang S; Huang T; Li Y Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121 [TBL] [Abstract][Full Text] [Related]
9. A cost-effective system for in-situ geological arsenic adsorption from groundwater. Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830 [TBL] [Abstract][Full Text] [Related]
10. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient removal of arsenate and arsenite with potassium ferrate: role of in situ formed ferric nanoparticle. Kong Y; Ma Y; Guo M; Huang Z; Ma J; Nie Y; Ding L; Chen Z; Shen J Environ Sci Pollut Res Int; 2023 Jan; 30(4):10697-10709. PubMed ID: 36083368 [TBL] [Abstract][Full Text] [Related]
12. Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater. Tong M; Yuan S; Zhang P; Liao P; Alshawabkeh AN; Xie X; Wang Y Environ Sci Technol; 2014 May; 48(9):5145-53. PubMed ID: 24708303 [TBL] [Abstract][Full Text] [Related]
13. Investigation of As, Mn and Fe fixation inside the aquifer during groundwater exploitation in the experimental system imitated natural conditions. Dung NT; Con TH; Cam BD; Kang Y Environ Geochem Health; 2012 Jun; 34(3):349-54. PubMed ID: 21826513 [TBL] [Abstract][Full Text] [Related]
14. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study. Cui J; Jing C; Che D; Zhang J; Duan S J Environ Sci (China); 2015 Jun; 32():42-53. PubMed ID: 26040730 [TBL] [Abstract][Full Text] [Related]
15. Sorption and desorption of arsenic to ferrihydrite in a sand filter. Jessen S; Larsen F; Koch CB; Arvin E Environ Sci Technol; 2005 Oct; 39(20):8045-51. PubMed ID: 16295873 [TBL] [Abstract][Full Text] [Related]
16. The redistribution process of As(Ⅲ) and Fe(Ⅱ) caused by As/Fe ratio, organic matter, and co-existing ions: Co-precipitation and co-oxidation. Liu X; Wang J; He Y; Li J; Tian Q; Xu H Ecotoxicol Environ Saf; 2024 Aug; 281():116631. PubMed ID: 38941658 [TBL] [Abstract][Full Text] [Related]
17. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Leupin OX; Hug SJ Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271 [TBL] [Abstract][Full Text] [Related]
18. Solutions for an efficient arsenite oxidation and removal from groundwater containing ferrous iron. Ying C; Liu C; Zhang F; Zheng L; Wang X; Yin H; Tan W; Feng X; Lanson B Water Res; 2023 Sep; 243():120345. PubMed ID: 37516074 [TBL] [Abstract][Full Text] [Related]
19. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026 [TBL] [Abstract][Full Text] [Related]
20. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater. Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]