BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38064936)

  • 1. Steep declines in radioactive caesium after 30 years of monitoring alpine plants in mountain areas of central Norway.
    Tingstad L; Sandercock B; Nybø S
    J Environ Radioact; 2024 Feb; 272():107352. PubMed ID: 38064936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of radiocaesium in the natural terrestrial environment in Norway following the Chernobyl accident.
    Bretten S; Gaare E; Skogland T; Steinnes E
    Analyst; 1992 Mar; 117(3):501-3. PubMed ID: 1580389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements on retention and transfer characteristics of radiocaesium from poor quality upland soils to heather and from heather to sheep.
    McAulay IR; Colgan PA; Moran D
    Sci Total Environ; 1989 Sep; 85():159-67. PubMed ID: 2814443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time series changes in radiocaesium distribution in tea plants (Camellia sinensis (L.)) after the Fukushima Dai-ichi Nuclear Power Plant accident.
    Hirono Y; Nonaka K
    J Environ Radioact; 2016 Feb; 152():119-26. PubMed ID: 26695880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thirty years after Chernobyl: Long-term determination of
    Savino F; Pugliese M; Quarto M; Adamo P; Loffredo F; De Cicco F; Roca V
    J Environ Radioact; 2017 Jun; 172():201-206. PubMed ID: 28390309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of radiocaesium in fungi.
    Bakken LR; Olsen RA
    Can J Microbiol; 1990 Oct; 36(10):704-10. PubMed ID: 2253110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caesium-137 in mountain flora with emphasis on reindeer's diet - Spatial and temporal trends.
    Skuterud L; Thørring H
    J Environ Radioact; 2021 May; 231():106551. PubMed ID: 33631506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte-Carlo prediction of changes in areas of west Cumbria requiring restrictions on sheep following the Chernobyl accident.
    Wright SM; Smith JT; Beresford NA; Scott WA
    Radiat Environ Biophys; 2003 Apr; 42(1):41-7. PubMed ID: 12684828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of origin of radiocaesium on the transfer from fallout to reindeer meat.
    Ahman B; Wright SM; Howard BJ
    Sci Total Environ; 2001 Oct; 278(1-3):171-81. PubMed ID: 11669265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity concentration of post-Chernobyl ¹³⁷Cs in the area of the Opole Anomaly (southern Poland).
    Wróbel Ł; Dołhańczuk-Śródka A; Kłos A; Ziembik Z
    Environ Monit Assess; 2015 Jan; 187(1):4084. PubMed ID: 25389020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocaesium activity concentrations in parmelioid lichens within a 60 km radius of the Fukushima Dai-ichi Nuclear Power Plant.
    Dohi T; Ohmura Y; Kashiwadani H; Fujiwara K; Sakamoto Y; Iijima K
    J Environ Radioact; 2015 Aug; 146():125-33. PubMed ID: 26002488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-cultivar variation in soil-to-plant transfer of radiocaesium and radiostrontium in Brassica oleracea.
    Penrose B; Johnson Née Payne KA; Arkhipov A; Maksimenko A; Gaschak S; Meacham MC; Crout NJM; White PJ; Beresford NA; Broadley MR
    J Environ Radioact; 2016 May; 155-156():112-121. PubMed ID: 26945429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term investigations of post-Chernobyl radiocaesium in fallout and air in North Croatia.
    Franić Z; Sega K; Petrinec B; Marović G
    Environ Monit Assess; 2009 Jan; 148(1-4):315-23. PubMed ID: 18278563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses.
    Cwanek A; Mietelski JW; Łokas E; Olech MA; Anczkiewicz R; Misiak R
    Chemosphere; 2020 Jan; 239():124783. PubMed ID: 31726517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots.
    Yoshimura K; Onda Y; Kato H
    J Environ Radioact; 2015 Jan; 139():362-369. PubMed ID: 25113169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of dose rate from Chernobyl-derived radiocaesium in Estonian soil.
    Lust M; Realo E
    J Environ Radioact; 2012 Oct; 112():118-24. PubMed ID: 22705415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, characterization and source analysis of radiocaesium micro-particles in soil sample collected from vicinity of Fukushima Dai-ichi nuclear power plant.
    Futagami F; Soliman M; Takamiya K; Sekimoto S; Oki Y; Kubota T; Konno M; Mizuno S; Ohtsuki T
    J Environ Radioact; 2020 Nov; 223-224():106388. PubMed ID: 32868095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiocaesium accumulation capacity of epiphytic lichens and adjacent barks collected at the perimeter boundary site of the Fukushima Dai-ichi Nuclear Power Station.
    Dohi T; Ohmura Y; Yoshimura K; Sasaki T; Fujiwara K; Kanaizuka S; Nakama S; Iijima K
    PLoS One; 2021; 16(5):e0251828. PubMed ID: 34029330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition of
    Kalkan SK; Forkapić S; Marković BS; Gavrilov BM; Bikit-Schroeder K; Mrđa D; Radaković GM; Tošić R
    Chemosphere; 2021 Feb; 264(Pt 2):128471. PubMed ID: 33059286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiocaesium contamination and dose rate estimation of terrestrial and freshwater wildlife in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident.
    Fuma S; Ihara S; Takahashi H; Inaba O; Sato Y; Kubota Y; Watanabe Y; Kawaguchi I; Aono T; Soeda H; Yoshida S
    J Environ Radioact; 2017 May; 171():176-188. PubMed ID: 28262604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.