BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38064984)

  • 1. Impacts of reduced synthetic fertiliser use under current and future climates: Exploration using integrated agroecosystem modelling in the upper River Taw observatory, UK.
    Zhang Y; Wu L; Jebari A; Collins AL
    J Environ Manage; 2024 Feb; 351():119732. PubMed ID: 38064984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved fertiliser management to reduce the greenhouse-gas emissions and ensure yields in a wheat-peanut relay intercropping system in China.
    Liu Z; Zhao C; Zhao J; Lai H; Li X
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22531-22546. PubMed ID: 34792777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture.
    Menegat S; Ledo A; Tirado R
    Sci Rep; 2022 Aug; 12(1):14490. PubMed ID: 36008570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between climate warming and land management regulate greenhouse gas fluxes in a temperate grassland ecosystem.
    Barneze AS; Whitaker J; McNamara NP; Ostle NJ
    Sci Total Environ; 2022 Aug; 833():155212. PubMed ID: 35421502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands.
    Haas E; Carozzi M; Massad RS; Butterbach-Bahl K; Scheer C
    Sci Total Environ; 2022 Aug; 836():154932. PubMed ID: 35447172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands.
    Cardenas LM; Bhogal A; Chadwick DR; McGeough K; Misselbrook T; Rees RM; Thorman RE; Watson CJ; Williams JR; Smith KA; Calvet S
    Sci Total Environ; 2019 Apr; 661():696-710. PubMed ID: 30684838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of climate and land use on N
    Gütlein A; Gerschlauer F; Kikoti I; Kiese R
    Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture?
    Shakoor A; Dar AA; Arif MS; Farooq TH; Yasmeen T; Shahzad SM; Tufail MA; Ahmed W; Albasher G; Ashraf M
    Sci Total Environ; 2022 Jan; 805():150337. PubMed ID: 34543788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The climate change mitigation potential of annual grasslands under future climates.
    Mayer A; Silver WL
    Ecol Appl; 2022 Dec; 32(8):e2705. PubMed ID: 35808918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of climate change on greenhouse gas emissions and water balance in a dryland-cropping region with variable precipitation.
    Karimi T; Stöckle CO; Higgins SS; Nelson RL
    J Environ Manage; 2021 Jun; 287():112301. PubMed ID: 33706089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England.
    Dixit PN; Richter GM; Coleman K; Collins AL
    Sci Total Environ; 2023 Nov; 900():166390. PubMed ID: 37597557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cropland intensification mediates the radiative balance of greenhouse gas emissions and soil carbon sequestration in maize systems of sub-Saharan Africa.
    Zheng J; Canarini A; Fujii K; Mmari WN; Kilasara MM; Funakawa S
    Glob Chang Biol; 2023 Mar; 29(6):1514-1529. PubMed ID: 36462165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling future climate effects on N
    Song J; Bao S; Bai J; Dang Y; Zeng X; Zhou J; Shen Y; Yue S; Li S
    J Environ Manage; 2024 Feb; 351():119854. PubMed ID: 38128212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration.
    Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S
    Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating response of N2O emissions to fertiliser N application and climatic variability from a rain-fed and wheat-cropped soil in Western Australia.
    Li Y; Barton L; Chen D
    J Sci Food Agric; 2012 Mar; 92(5):1130-43. PubMed ID: 21953483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cover crop cultivation strategies in a Scandinavian context for climate change mitigation and biogas production - Insights from a life cycle perspective.
    Nilsson J; Ernfors M; Prade T; Hansson PA
    Sci Total Environ; 2024 Mar; 918():170629. PubMed ID: 38320700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation.
    Zhang J; Tian H; Shi H; Zhang J; Wang X; Pan S; Yang J
    Glob Chang Biol; 2020 Nov; 26(11):6116-6133. PubMed ID: 32697859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved prediction of farm nitrous oxide emission through an understanding of the interaction among climate extremes, soil nitrogen dynamics and irrigation water.
    Maraseni T; Kodur S
    J Environ Manage; 2019 Oct; 248():109278. PubMed ID: 31336339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal changes in greenhouse gas emissions and soil organic carbon sequestration for major cropping systems across China and their drivers over the past two decades.
    Wang Y; Tao F; Yin L; Chen Y
    Sci Total Environ; 2022 Aug; 833():155087. PubMed ID: 35421495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.