These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38065261)

  • 41. Mature fine tailings from oil sands processing harbour diverse methanogenic communities.
    Penner TJ; Foght JM
    Can J Microbiol; 2010 Jun; 56(6):459-70. PubMed ID: 20657616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering Microbes for Remediation of Oil Sands Tailings.
    Chegounian P; Zerriffi H; Yadav VG
    Trends Biotechnol; 2020 Nov; 38(11):1192-1196. PubMed ID: 32402414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct evaluation of in situ biodegradation in Athabasca oil sands tailings ponds using natural abundance radiocarbon.
    Ahad JM; Pakdel H
    Environ Sci Technol; 2013 Sep; 47(18):10214-22. PubMed ID: 23957578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.
    Gunawan Y; Nemati M; Dalai A
    Water Res; 2014 Mar; 51():11-24. PubMed ID: 24388827
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.
    Kuznetsov P; Kuznetsova A; Foght JM; Siddique T
    Sci Total Environ; 2015 Feb; 505():1-10. PubMed ID: 25306090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ bioremediation of naphthenic acids contaminated tailing pond waters in the athabasca oil sands region--demonstrated field studies and plausible options: a review.
    Quagraine EK; Peterson HG; Headley JV
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):685-722. PubMed ID: 15756978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ebullition enhances chemical mass transport across the tailings-water interface of oil sands pit lakes.
    Francis DJ; Barbour SL; Lindsay MBJ
    J Contam Hydrol; 2022 Feb; 245():103938. PubMed ID: 34915427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors influencing stable isotopes and growth of algae in oil sands aquatic reclamation.
    Boutsivongsakd M; Farwell AJ; Chen H; Dixon DG
    J Toxicol Environ Health A; 2015; 78(3):196-214. PubMed ID: 25506635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds.
    Miles SM; Asiedu E; Balaberda AL; Ulrich AC
    Chemosphere; 2020 Nov; 258():127281. PubMed ID: 32540545
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities.
    Yergeau E; Lawrence JR; Sanschagrin S; Waiser MJ; Korber DR; Greer CW
    Appl Environ Microbiol; 2012 Nov; 78(21):7626-37. PubMed ID: 22923391
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-biodegradation of naphthenic acids in anoxic denitrifying biofilm reactors.
    Wang W; Nemati M
    Environ Technol; 2021 Mar; 42(7):984-1000. PubMed ID: 31378149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit.
    Warren LA; Kendra KE; Brady AL; Slater GF
    Front Microbiol; 2015; 6():1533. PubMed ID: 26869997
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes.
    Salamanca D; Bühler K; Engesser KH; Schmid A; Karande R
    N Biotechnol; 2021 Jan; 60():200-206. PubMed ID: 33127412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient hydroxylation of cycloalkanes by co-addition of decoy molecules to variants of the cytochrome P450 CYP102A1.
    Dezvarei S; Onoda H; Shoji O; Watanabe Y; Bell SG
    J Inorg Biochem; 2018 Jun; 183():137-145. PubMed ID: 29526504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytotoxicity and naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte Phragmites australis.
    Armstrong SA; Headley JV; Peru KM; Mikula RJ; Germida JJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):1008-16. PubMed ID: 20486009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction.
    Reid ML; Warren LA
    J Environ Manage; 2016 Jan; 166():321-9. PubMed ID: 26520039
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species.
    Samad A; Degenhardt D; Séguin A; Morency MJ; Gagné P; Martineau C
    Front Microbiol; 2023; 14():1168653. PubMed ID: 37465026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolism of BTEX and naphtha compounds to methane in oil sands tailings.
    Siddique T; Fedorak PM; MacKinnon MD; Foght JM
    Environ Sci Technol; 2007 Apr; 41(7):2350-6. PubMed ID: 17438786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities.
    Wilson SL; Li C; Ramos-Padrón E; Nesbø C; Soh J; Sensen CW; Voordouw G; Foght J; Gieg LM
    J Biotechnol; 2016 Oct; 235():187-96. PubMed ID: 27378620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermoresponsive Starch for the Flocculation of Oil Sands Mature Fine Tailings.
    Zheng B; Taylor SD
    Environ Sci Technol; 2020 Nov; 54(21):13981-13991. PubMed ID: 33095566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.