These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38065275)

  • 1. Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures.
    Sanaboyana VR; Elcock AH
    J Mol Biol; 2024 Jan; 436(2):168393. PubMed ID: 38065275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Iron-Sulfur (Fe-S) Cluster and Zinc (Zn) Binding Sites Within Proteomes Predicted by DeepMind's AlphaFold2 Program Dramatically Expands the Metalloproteome.
    Wehrspan ZJ; McDonnell RT; Elcock AH
    J Mol Biol; 2022 Jan; 434(2):167377. PubMed ID: 34838520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods.
    Leversen NA; de Souza GA; Målen H; Prasad S; Jonassen I; Wiker HG
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2375-2383. PubMed ID: 19389770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR hawk-eyed view of AlphaFold2 structures.
    Zweckstetter M
    Protein Sci; 2021 Nov; 30(11):2333-2337. PubMed ID: 34469019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences.
    Varadi M; Bertoni D; Magana P; Paramval U; Pidruchna I; Radhakrishnan M; Tsenkov M; Nair S; Mirdita M; Yeo J; Kovalevskiy O; Tunyasuvunakool K; Laydon A; Žídek A; Tomlinson H; Hariharan D; Abrahamson J; Green T; Jumper J; Birney E; Steinegger M; Hassabis D; Velankar S
    Nucleic Acids Res; 2024 Jan; 52(D1):D368-D375. PubMed ID: 37933859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Secretory Proteins with SignalP.
    Nielsen H
    Methods Mol Biol; 2017; 1611():59-73. PubMed ID: 28451972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prediction of organelle-targeting peptides in eukaryotic proteins with Grammatical-Restrained Hidden Conditional Random Fields.
    Indio V; Martelli PL; Savojardo C; Fariselli P; Casadio R
    Bioinformatics; 2013 Apr; 29(8):981-8. PubMed ID: 23428638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locating proteins in the cell using TargetP, SignalP and related tools.
    Emanuelsson O; Brunak S; von Heijne G; Nielsen H
    Nat Protoc; 2007; 2(4):953-71. PubMed ID: 17446895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Computational analysis of signal peptide-dependent secreted protein in Caenorthaditis elegans ws123].
    Wu HZ; Li CY; Zhu YY; Bi YF
    Yi Chuan; 2006 Apr; 28(4):470-8. PubMed ID: 16606602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ins and outs of AlphaFold2 transmembrane protein structure predictions.
    Hegedűs T; Geisler M; Lukács GL; Farkas B
    Cell Mol Life Sci; 2022 Jan; 79(1):73. PubMed ID: 35034173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing Fairness of AlphaFold2 Prediction of Protein 3D Structures.
    Abbas U; Chen J; Shao Q
    bioRxiv; 2023 May; ():. PubMed ID: 37293014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization.
    Petsalaki EI; Bagos PG; Litou ZI; Hamodrakas SJ
    Genomics Proteomics Bioinformatics; 2006 Feb; 4(1):48-55. PubMed ID: 16689702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms.
    Lee SA; Wormsley S; Kamoun S; Lee AF; Joiner K; Wong B
    Yeast; 2003 May; 20(7):595-610. PubMed ID: 12734798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AlphaFold2 as a replacement for solution NMR structure determination of small proteins: Not so fast!
    Bonin JP; Aramini JM; Dong Y; Wu H; Kay LE
    J Magn Reson; 2024 Jul; 364():107725. PubMed ID: 38917639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of subcellular localization using sequence-biased recurrent networks.
    Bodén M; Hawkins J
    Bioinformatics; 2005 May; 21(10):2279-86. PubMed ID: 15746276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Present Impact of AlphaFold2 Revolution on Structural Biology, and an Illustration With the Structure Prediction of the Bacteriophage J-1 Host Adhesion Device.
    Goulet A; Cambillau C
    Front Mol Biosci; 2022; 9():907452. PubMed ID: 35615740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated pipeline integrating AlphaFold 2 and MODELLER for protein structure prediction.
    Gil Zuluaga FH; D'Arminio N; Bardozzo F; Tagliaferri R; Marabotti A
    Comput Struct Biotechnol J; 2023; 21():5620-5629. PubMed ID: 38047234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AlphaFold2 fails to predict protein fold switching.
    Chakravarty D; Porter LL
    Protein Sci; 2022 Jun; 31(6):e4353. PubMed ID: 35634782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionally annotating cysteine disulfides and metal binding sites in the plant kingdom using AlphaFold2 predicted structures.
    Willems P; Huang J; Messens J; Van Breusegem F
    Free Radic Biol Med; 2023 Jan; 194():220-229. PubMed ID: 36493985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.