These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38065444)
1. Degradation behaviour of porous poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) scaffolds in cell culture. Patel R; Gómez-Cerezo MN; Huang H; Grøndahl L; Lu M Int J Biol Macromol; 2024 Feb; 257(Pt 2):128644. PubMed ID: 38065444 [TBL] [Abstract][Full Text] [Related]
2. In vitro evaluation of porous poly(hydroxybutyrate-co-hydroxyvalerate)/akermanite composite scaffolds manufactured using selective laser sintering. Gómez-Cerezo MN; Patel R; Vaquette C; Grøndahl L; Lu M Biomater Adv; 2022 Apr; 135():212748. PubMed ID: 35929220 [TBL] [Abstract][Full Text] [Related]
3. In vitro degradation of a unique porous PHBV scaffold manufactured using selective laser sintering. Diermann SH; Lu M; Edwards G; Dargusch M; Huang H J Biomed Mater Res A; 2019 Jan; 107(1):154-162. PubMed ID: 30358091 [TBL] [Abstract][Full Text] [Related]
4. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486 [TBL] [Abstract][Full Text] [Related]
5. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
6. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
7. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration. Li C; Zhang J; Li Y; Moran S; Khang G; Ge Z Biomed Mater; 2013 Apr; 8(2):025005. PubMed ID: 23385654 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and properties of porous piezoelectric BT/PHBV composite scaffold. Jiao H; Song S; Zhao K; Zhang X; Tang Y J Biomater Sci Polym Ed; 2020 Aug; 31(12):1552-1565. PubMed ID: 32403996 [TBL] [Abstract][Full Text] [Related]
9. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
10. Additive Manufacturing of Poly(3-hydroxybutyrate- Pecorini G; Braccini S; Parrini G; Chiellini F; Puppi D Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409254 [TBL] [Abstract][Full Text] [Related]
11. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. Hosseini FS; Soleimanifar F; Aidun A; Enderami SE; Saburi E; Marzouni HZ; Khani MM; Khojasteh A; Ardeshirylajimi A J Cell Physiol; 2019 Jul; 234(7):11537-11544. PubMed ID: 30478907 [TBL] [Abstract][Full Text] [Related]
12. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637 [TBL] [Abstract][Full Text] [Related]
13. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149 [TBL] [Abstract][Full Text] [Related]
14. PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering. Ke Y; Wu G; Wang Y Biomed Res Int; 2014; 2014():157987. PubMed ID: 24579074 [TBL] [Abstract][Full Text] [Related]
15. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. Kuppan P; Sethuraman S; Krishnan UM J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering. Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988 [TBL] [Abstract][Full Text] [Related]
17. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related]
18. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication. Rodríguez-Cendal AI; Gómez-Seoane I; de Toro-Santos FJ; Fuentes-Boquete IM; Señarís-Rodríguez J; Díaz-Prado SM Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511432 [TBL] [Abstract][Full Text] [Related]
19. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility. Ke Y; Wang YJ; Ren L; Zhao QC; Huang W Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067 [TBL] [Abstract][Full Text] [Related]
20. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. Wu J; Xue K; Li H; Sun J; Liu K PLoS One; 2013; 8(8):e71563. PubMed ID: 23951190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]