These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38066046)
21. Detecting Autism Spectrum Disorder Using Spectral Analysis of Electroretinogram and Machine Learning: Preliminary results. Manjur SM; Hossain MB; Constable PA; Thompson DA; Marmolejo-Ramos F; Lee IO; Skuse DH; Posada-Quintero HF Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3435-3438. PubMed ID: 36083945 [TBL] [Abstract][Full Text] [Related]
22. Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Xiao X; Fang H; Wu J; Xiao C; Xiao T; Qian L; Liang F; Xiao Z; Chu KK; Ke X Autism Res; 2017 Apr; 10(4):620-630. PubMed ID: 27874271 [TBL] [Abstract][Full Text] [Related]
23. Computer-aided diagnosis of autism spectrum disorder from EEG signals using deep learning with FAWT and multiscale permutation entropy features. Chawla P; Rana SB; Kaur H; Singh K Proc Inst Mech Eng H; 2023 Feb; 237(2):282-294. PubMed ID: 36515392 [TBL] [Abstract][Full Text] [Related]
24. Detection of an Autism EEG Signature From Only Two EEG Channels Through Features Extraction and Advanced Machine Learning Analysis. Grossi E; Valbusa G; Buscema M Clin EEG Neurosci; 2021 Sep; 52(5):330-337. PubMed ID: 33349054 [TBL] [Abstract][Full Text] [Related]
25. Identify abnormal functional connectivity of resting state networks in Autism spectrum disorder and apply to machine learning-based classification. Sun JW; Fan R; Wang Q; Wang QQ; Jia XZ; Ma HB Brain Res; 2021 Apr; 1757():147299. PubMed ID: 33516816 [TBL] [Abstract][Full Text] [Related]
26. Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning. Stevens E; Dixon DR; Novack MN; Granpeesheh D; Smith T; Linstead E Int J Med Inform; 2019 Sep; 129():29-36. PubMed ID: 31445269 [TBL] [Abstract][Full Text] [Related]
27. Classification of Children With Autism and Typical Development Using Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model Development and Performance Evaluation. Zhao Z; Tang H; Zhang X; Qu X; Hu X; Lu J J Med Internet Res; 2021 Aug; 23(8):e29328. PubMed ID: 34435957 [TBL] [Abstract][Full Text] [Related]
28. Ensemble statistical and subspace clustering model for analysis of autism spectrum disorder phenotypes. Al-Jabery K; Obafemi-Ajayi T; Olbricht GR; Takahashi TN; Kanne S; Wunsch D Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3329-3333. PubMed ID: 28269016 [TBL] [Abstract][Full Text] [Related]
29. Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Levy S; Duda M; Haber N; Wall DP Mol Autism; 2017; 8():65. PubMed ID: 29270283 [TBL] [Abstract][Full Text] [Related]
30. Identifying autism using EEG: unleashing the power of feature selection and machine learning. Ranaut A; Khandnor P; Chand T Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38457850 [TBL] [Abstract][Full Text] [Related]
31. Use of Oculomotor Behavior to Classify Children with Autism and Typical Development: A Novel Implementation of the Machine Learning Approach. Zhao Z; Wei J; Xing J; Zhang X; Qu X; Hu X; Lu J J Autism Dev Disord; 2023 Mar; 53(3):934-946. PubMed ID: 35913654 [TBL] [Abstract][Full Text] [Related]
32. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study. Duffy FH; Als H BMC Med; 2012 Jun; 10():64. PubMed ID: 22730909 [TBL] [Abstract][Full Text] [Related]
33. Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: A proof of concept for diagnosis. Alcañiz M; Chicchi-Giglioli IA; Carrasco-Ribelles LA; Marín-Morales J; Minissi ME; Teruel-García G; Sirera M; Abad L Autism Res; 2022 Jan; 15(1):131-145. PubMed ID: 34811930 [TBL] [Abstract][Full Text] [Related]
34. Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. Matlis S; Boric K; Chu CJ; Kramer MA BMC Neurol; 2015 Jun; 15():97. PubMed ID: 26111798 [TBL] [Abstract][Full Text] [Related]
35. Machine Learning Differentiation of Autism Spectrum Sub-Classifications. Thapa R; Garikipati A; Ciobanu M; Singh NP; Browning E; DeCurzio J; Barnes G; Dinenno FA; Mao Q; Das R J Autism Dev Disord; 2024 Nov; 54(11):4216-4231. PubMed ID: 37751097 [TBL] [Abstract][Full Text] [Related]
36. EEG entropy analysis in autistic children. Kang J; Chen H; Li X; Li X J Clin Neurosci; 2019 Apr; 62():199-206. PubMed ID: 30503641 [TBL] [Abstract][Full Text] [Related]
37. Toward a motor signature in autism: Studies from human-machine interaction. Xavier J; Guedjou H; Anzalone SM; Boucenna S; Guigon E; Chetouani M; Cohen D Encephale; 2019 Apr; 45(2):182-187. PubMed ID: 30503684 [TBL] [Abstract][Full Text] [Related]
38. Brain imaging-based machine learning in autism spectrum disorder: methods and applications. Xu M; Calhoun V; Jiang R; Yan W; Sui J J Neurosci Methods; 2021 Sep; 361():109271. PubMed ID: 34174282 [TBL] [Abstract][Full Text] [Related]
39. A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder. Rahman MM; Usman OL; Muniyandi RC; Sahran S; Mohamed S; Razak RA Brain Sci; 2020 Dec; 10(12):. PubMed ID: 33297436 [TBL] [Abstract][Full Text] [Related]