These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38066350)

  • 21. Montmorillonite clay-based heterogenous catalyst for the synthesis of nitrogen heterocycle organic moieties: a review.
    Chellapandi T; Madhumitha G
    Mol Divers; 2022 Aug; 26(4):2311-2339. PubMed ID: 34705155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetite Nanoparticles-Supported APTES as a Powerful and Recoverable Nanocatalyst for the Preparation of 2-Amino-5,10-dihydro- 5,10-dioxo-4H-benzo[g]chromenes and Tetrahydrobenzo[g]quinoline-5,10- diones.
    Ghasemzadeh MA; Elyasi Z; Azimi-Nasrabad M; Mirhosseini-Eshkevari B
    Comb Chem High Throughput Screen; 2017; 20(1):64-76. PubMed ID: 28017132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acidic Ionic Liquid-catalyzed Synthesis of Pyrano[4,3-b]pyran-5(4H)-ones using 4,4,4-trifluoro-1-phenylbutane-1,3-dione as a Building Block.
    Shahi AM; Nikpassand M; Fekri LZ
    Curr Org Synth; 2020; 17(8):648-653. PubMed ID: 32433006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green multicomponent synthesis of pyrano[2,3-
    Ahmad A; Rao S; Shetty NS
    RSC Adv; 2023 Sep; 13(41):28798-28833. PubMed ID: 37790089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlorosulfonic Acid Supported Piperidine-4-carboxylic Acid (PPCA) Functionalized Fe3O4 Nanoparticles (Fe3O4-PPCA): The Efficient, Green and Reusable Nanocatalyst for the Synthesis of Pyrazolyl Coumarin Derivatives under Solvent-Free Conditions.
    Habibzadeh S; Ghasemnejad-Bosra H; Haghdadi M; Heydari-Parastar S
    Comb Chem High Throughput Screen; 2019; 22(2):123-128. PubMed ID: 30914018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and antimicrobial evaluation of naphtho[2,1-b]pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives.
    Eid FA; Abd El-Wahab AH; Ali GA; Khafagy MM
    Acta Pharm; 2004 Mar; 54(1):13-26. PubMed ID: 15050041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated nanocatalysts.
    Zeng HC
    Acc Chem Res; 2013 Feb; 46(2):226-35. PubMed ID: 23214436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites.
    Bhat AR; Dongre RS; Almalki FA; Berredjem M; Aissaoui M; Touzani R; Hadda TB; Akhter MS
    Bioorg Chem; 2021 Jan; 106():104480. PubMed ID: 33279245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetically Recoverable Catalysts: Beyond Magnetic Separation.
    Shifrina ZB; Bronstein LM
    Front Chem; 2018; 6():298. PubMed ID: 30073164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid one-pot synthesis of magnetically separable Fe
    Xiao X; Lee S; Ma H; Yang J; Han WS; Yu T
    Dalton Trans; 2022 Aug; 51(30):11485-11490. PubMed ID: 35833526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in Matrix-Supported Palladium Nanocatalysts for Water Treatment.
    Wang W; Nadagouda MN; Mukhopadhyay SM
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review.
    Jin X; Wu C; Fu L; Tian X; Wang P; Zhou Y; Zuo J
    J Environ Sci (China); 2023 Feb; 124():330-349. PubMed ID: 36182143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-situ studies of nanocatalysis.
    Zhang S; Nguyen L; Zhu Y; Zhan S; Tsung CK; Tao FF
    Acc Chem Res; 2013 Aug; 46(8):1731-9. PubMed ID: 23618394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Greener Syntheses of Coumarin Derivatives Using Magnetic Nanocatalysts: Recent Advances.
    Zeinali S; Fekri LZ; Nikpassand M; Varma RS
    Top Curr Chem (Cham); 2022 Nov; 381(1):1. PubMed ID: 36370211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of novel pyrano[2,3-f]chromene-dione derivatives using phosphoric acid-functionalized silica-coated Fe
    Sedighimehr I; Karami B; Farahi M; Keshavarz M
    Mol Divers; 2022 Dec; 26(6):3325-3336. PubMed ID: 35915390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe₃O₄/g-C₃N₄ Nanocomposites as a Reusable Catalyst for the Synthesis of 5-Arylidenepyrimidine-2,4,6-(1H,3H,5H)-Trione and Pyrano-Pyrimidinone Derivatives in Aqueous Media.
    Shirini F; Kamali F
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5433-5444. PubMed ID: 32331115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymer Single Crystal As Magnetically Recoverable Support for Nanocatalysts.
    Dong B; Miller DL; Li CY
    J Phys Chem Lett; 2012 May; 3(10):1346-50. PubMed ID: 26286781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanocatalysts for Suzuki cross-coupling reactions.
    Fihri A; Bouhrara M; Nekoueishahraki B; Basset JM; Polshettiwar V
    Chem Soc Rev; 2011 Oct; 40(10):5181-203. PubMed ID: 21804997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes.
    Ilkhanizadeh S; Khalafy J; Dekamin MG
    Int J Biol Macromol; 2019 Nov; 140():605-613. PubMed ID: 31437499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. L-Cysteine Catalyzed Environmentally Benign One-pot Multicomponent Approach Towards the Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives.
    Sikandar S; Zahoor AF; Ahmad S; Anjum MN; Ahmad MN; Shah MSU
    Curr Org Synth; 2020; 17(6):457-463. PubMed ID: 32392115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.