These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38066536)

  • 1. DNA polymerases in precise and predictable CRISPR/Cas9-mediated chromosomal rearrangements.
    Mehryar MM; Shi X; Li J; Wu Q
    BMC Biol; 2023 Dec; 21(1):288. PubMed ID: 38066536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.
    Li J; Shou J; Guo Y; Tang Y; Wu Y; Jia Z; Zhai Y; Chen Z; Xu Q; Wu Q
    J Mol Cell Biol; 2015 Aug; 7(4):284-98. PubMed ID: 25757625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways.
    Schimmel J; Muñoz-Subirana N; Kool H; van Schendel R; van der Vlies S; Kamp JA; de Vrij FMS; Kushner SA; Smith GCM; Boulton SJ; Tijsterman M
    Cell Rep; 2023 Feb; 42(2):112019. PubMed ID: 36701230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dual sgRNA Approach for Functional Genomics in
    Pauwels L; De Clercq R; Goossens J; Iñigo S; Williams C; Ron M; Britt A; Goossens A
    G3 (Bethesda); 2018 Jul; 8(8):2603-2615. PubMed ID: 29884615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering.
    Wu Q; Shou J
    J Mol Cell Biol; 2021 Feb; 12(11):828-856. PubMed ID: 33125070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion.
    Liu C; Yue Y; Xue Y; Zhou C; Ma Y
    Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing.
    Tatiossian KJ; Clark RDE; Huang C; Thornton ME; Grubbs BH; Cannon PM
    Mol Ther; 2021 Mar; 29(3):1057-1069. PubMed ID: 33160457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise genomic deletions using paired prime editing.
    Choi J; Chen W; Suiter CC; Lee C; Chardon FM; Yang W; Leith A; Daza RM; Martin B; Shendure J
    Nat Biotechnol; 2022 Feb; 40(2):218-226. PubMed ID: 34650269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Sequencing Reveals the Comprehensive CRISPR-Cas9 Editing Spectrum in
    Ma S; Wang A; Chen X; Zhang T; Xing W; Xia Q
    CRISPR J; 2021 Jun; 4(3):371-380. PubMed ID: 34042501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology.
    Korablev AN; Serova IA; Serov OL
    BMC Genet; 2017 Dec; 18(Suppl 1):112. PubMed ID: 29297312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting.
    Sizova I; Kelterborn S; Verbenko V; Kateriya S; Hegemann P
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33836052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9.
    Yoo KW; Yadav MK; Song Q; Atala A; Lu B
    Nucleic Acids Res; 2022 Apr; 50(7):3944-3957. PubMed ID: 35323942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.
    Weiss T; Wang C; Kang X; Zhao H; Elena Gamo M; Starker CG; Crisp PA; Zhou P; Springer NM; Voytas DF; Zhang F
    Plant J; 2020 Nov; 104(3):828-838. PubMed ID: 32786122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing.
    Fu YW; Dai XY; Wang WT; Yang ZX; Zhao JJ; Zhang JP; Wen W; Zhang F; Oberg KC; Zhang L; Cheng T; Zhang XB
    Nucleic Acids Res; 2021 Jan; 49(2):969-985. PubMed ID: 33398341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient CRISPR/Cas9-based genome editing in carrot cells.
    Klimek-Chodacka M; Oleszkiewicz T; Lowder LG; Qi Y; Baranski R
    Plant Cell Rep; 2018 Apr; 37(4):575-586. PubMed ID: 29332168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.