These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3806655)

  • 1. The carrier reorientation step in erythrocyte choline transport: pH effects and the involvement of a carrier ionizing group.
    Devés R; Reyes G; Krupka RM
    J Membr Biol; 1986; 93(2):165-75. PubMed ID: 3806655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of internal forms of the choline carrier of erythrocytes with N-ethylmaleimide: evidence for a carrier conformational change on complex formation.
    Devés R; Krupka RM
    J Membr Biol; 1981; 63(1-2):99-103. PubMed ID: 7310854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The choline carrier of erythrocytes: location of the NEM-reactive thiol group in the inner gated channel.
    Krupka RM; Devés R
    J Membr Biol; 1988; 101(1):43-7. PubMed ID: 2452882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The comparative specificity of the inner and outer substrate transfer sites in the choline carrier of human erythrocytes.
    Deves R; Krupka RM
    J Membr Biol; 1984; 80(1):71-80. PubMed ID: 6481794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Nov; 557(2):469-85. PubMed ID: 497194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    Biochem Cell Biol; 1986 Nov; 64(11):1099-107. PubMed ID: 2435306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a two-state mobile carrier mechanism in erythrocyte choline transport: effects of substrate analogs on inactivation of the carrier by N-ethylmaleimide.
    Devés R; Krupka RM
    J Membr Biol; 1981; 61(1):21-30. PubMed ID: 7265181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent noncompetitive inhibition of choline transport in erythrocytes by inhibitors bound at the substrate site.
    Devés R; Krupka RM
    J Membr Biol; 1983; 74(3):183-9. PubMed ID: 6887231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.
    Devés R; Krupka RM
    J Membr Biol; 1987; 99(1):13-23. PubMed ID: 3430573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of chloroquine by human erythrocytes.
    Ferrari V; Cutler DJ
    Biochem Pharmacol; 1990 Feb; 39(4):753-62. PubMed ID: 2306282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine transport by hemolysed and restored pigeon red cells. Effects of a Donnan-induced electrical potential on entry and exit kinetics.
    Vidaver GA; Shepherd SL; Lagow JB; Wiechelman KJ
    Biochim Biophys Acta; 1976 Sep; 443(3):494-514. PubMed ID: 61043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):63-79. PubMed ID: 1294062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
    De Bruijne AW; Vreeburg H; Van Steveninck J
    Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry.
    Kottra G; Daniel H
    J Physiol; 2001 Oct; 536(Pt 2):495-503. PubMed ID: 11600684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of the glucose carrier of erythrocytes with sodium tetrathionate: evidence for inward-facing and outward-facing carrier conformations.
    Krupka RM
    J Membr Biol; 1985; 84(1):35-43. PubMed ID: 4039759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of choline transport in erythrocytes by n-alkanols.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):32-40. PubMed ID: 2265191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-Leucine transport in human red blood cells: a detailed kinetic analysis.
    Rosenberg R
    J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.