BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 38066641)

  • 1. New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae).
    Ludington AJ; Hammond JM; Breen J; Deveson IW; Sanders KL
    BMC Biol; 2023 Dec; 21(1):284. PubMed ID: 38066641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the Noncoding Features of Sea Snake Mitochondrial Genomes within Elapidae.
    Xiaokaiti X; Hashiguchi Y; Ota H; Kumazawa Y
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Genome of Shaw's Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment.
    Peng C; Ren JL; Deng C; Jiang D; Wang J; Qu J; Chang J; Yan C; Jiang K; Murphy RW; Wu DD; Li JT
    Mol Biol Evol; 2020 Jun; 37(6):1744-1760. PubMed ID: 32077944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Reference-Quality Sea Snake Genomes Reveal Their Divergent Evolution of Adaptive Traits and Venom Systems.
    Li A; Wang J; Sun K; Wang S; Zhao X; Wang T; Xiong L; Xu W; Qiu L; Shang Y; Liu R; Wang S; Lu Y
    Mol Biol Evol; 2021 Oct; 38(11):4867-4883. PubMed ID: 34320652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demographic analyses of marine and terrestrial snakes (Elapidae) using whole genome sequences.
    Ludington AJ; Sanders KL
    Mol Ecol; 2021 Jan; 30(2):545-554. PubMed ID: 33170980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes.
    Simões BF; Gower DJ; Rasmussen AR; Sarker MAR; Fry GC; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Chang BS; Pisani D; Sanders KL
    Curr Biol; 2020 Jul; 30(13):2608-2615.e4. PubMed ID: 32470360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spine-bellied sea snake (Hydrophis curtus) venom shows greater skeletal myotoxicity compared with cardiac myotoxicity.
    Neale V; Smout MJ; Seymour JE
    Toxicon; 2018 Mar; 143():108-117. PubMed ID: 29355573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan, China.
    Wang B; Wang Q; Wang C; Wang B; Qiu L; Zou S; Zhang F; Liu G; Zhang L
    Toxicon; 2020 Nov; 187():35-46. PubMed ID: 32871160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Evaluation of a Horse Antiserum against the Venom of Sea Snake
    Wang B; Liu G; Luo M; Zhang X; Wang Q; Zou S; Zhang F; Jin X; Zhang L
    Toxins (Basel); 2022 Apr; 14(4):. PubMed ID: 35448862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Venom-gland transcriptomic, venomic, and antivenomic profiles of the spine-bellied sea snake (Hydrophis curtus) from the South China Sea.
    Zhao HY; Wen L; Miao YF; Du Y; Sun Y; Yin Y; Lin CX; Lin LH; Ji X; Gao JF
    BMC Genomics; 2021 Jul; 22(1):520. PubMed ID: 34238212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters.
    Tan CH; Tan NH; Tan KY; Kwong KO
    Toxins (Basel); 2015 Feb; 7(2):572-81. PubMed ID: 25690691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Lee MS; Mumpuni ; Bertozzi T; Rasmussen AR
    Mol Phylogenet Evol; 2013 Mar; 66(3):575-91. PubMed ID: 23026811
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Tan CH; Tan KY
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33572266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and detection of sea snake antisera raised in rabbits.
    Li JQ; Lv JG; Wen L; Miao YF; Gao JF; Lin CX; Du Y; Ji X
    Toxicon; 2020 Oct; 186():168-174. PubMed ID: 32828954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations.
    Sanders KL; Lee MS; Leys R; Foster R; Keogh JS
    J Evol Biol; 2008 May; 21(3):682-95. PubMed ID: 18384538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea snake harvest in the gulf of Thailand.
    Van Cao N; Thien Tao N; Moore A; Montoya A; Redsted Rasmussen A; Broad K; Voris HK; Takacs Z
    Conserv Biol; 2014 Dec; 28(6):1677-87. PubMed ID: 25388500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes.
    Pahari S; Bickford D; Fry BG; Kini RM
    BMC Evol Biol; 2007 Sep; 7():175. PubMed ID: 17900344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and chemical characterization of a toxin isolated from the venom of the sea snake, Hydrophis torquatus aagardi.
    Nagamizu M; Komori Y; Uchiya K; Nikai T; Tu AT
    Toxins (Basel); 2009 Dec; 1(2):162-72. PubMed ID: 22069538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent innovation in the evolution of paddle-shaped tails in viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Rasmussen AR; Elmberg J
    Integr Comp Biol; 2012 Aug; 52(2):311-20. PubMed ID: 22634358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent rapid speciation and ecomorph divergence in Indo-Australian sea snakes.
    Sanders KL; Rasmussen AR; Mumpuni ; Elmberg J; de Silva A; Guinea ML; Lee MS
    Mol Ecol; 2013 May; 22(10):2742-59. PubMed ID: 23506038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.