These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38067545)

  • 21. Torrefaction of organic municipal solid waste to high calorific value solid fuel using batch reactor with helical screw induced rotation.
    Abdulyekeen KA; Daud WMAW; Patah MFA; Abnisa F
    Bioresour Technol; 2022 Nov; 363():127974. PubMed ID: 36122850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.
    Yuan G; Chen D; Yin L; Wang Z; Zhao L; Wang JY
    Waste Manag; 2014 Jun; 34(6):1045-50. PubMed ID: 24045169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Feed Mass, Reactor Temperature, and Time on the Yield of Waste Polypropylene Pyrolysis Oil Produced via a Fixed-Bed Reactor.
    Papuga S; Savković J; Djurdjevic M; Ciprioti SV
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical analysis on a catalytic pyrolysis reactor design for plastic waste upcycling using CFD modelling.
    De la Flor-Barriga LA; Rodríguez-Zúñiga UF
    RSC Adv; 2022 Apr; 12(20):12436-12445. PubMed ID: 35480373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor.
    Ly HV; Tran QK; Kim SS; Kim J; Choi SS; Oh C
    Environ Pollut; 2021 Apr; 275():116023. PubMed ID: 33582642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of ash composition on gasification of poultry wastes in a fluidized bed reactor.
    Di Gregorio F; Santoro D; Arena U
    Waste Manag Res; 2014 Apr; 32(4):323-30. PubMed ID: 24638275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative performance of biofilm reactor types.
    Rittmann BE
    Biotechnol Bioeng; 1982 Jun; 24(6):1341-70. PubMed ID: 18546429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluidized bed gasification of industrial solid recovered fuels.
    Arena U; Di Gregorio F
    Waste Manag; 2016 Apr; 50():86-92. PubMed ID: 26896004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed.
    Kim SW; Koo BS; Lee DH
    Bioresour Technol; 2014 Sep; 167():425-32. PubMed ID: 25006017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolysis of softwood carbohydrates in a fluidized bed reactor.
    Aho A; Kumar N; Eränen K; Holmbom B; Hupa M; Salmi T; Murzin DY
    Int J Mol Sci; 2008 Sep; 9(9):1665-1675. PubMed ID: 19325824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaling of catalytic cracking fluidized bed downer reactor based on CFD simulations-Part II: effect of reactor scale.
    Khongprom P; Ratchasombat S; Wanchan W; Bumphenkiattikul P; Limtrakul S
    RSC Adv; 2022 Jul; 12(33):21394-21405. PubMed ID: 35975037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinguishing primary and secondary reactions of cellulose pyrolysis.
    Patwardhan PR; Dalluge DL; Shanks BH; Brown RC
    Bioresour Technol; 2011 Apr; 102(8):5265-9. PubMed ID: 21354786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of temperature and composite alumina on pyrolysis of sewage sludge.
    Sun Y; Jin B; Wu W; Zuo W; Zhang Y; Zhang Y; Huang Y
    J Environ Sci (China); 2015 Apr; 30():1-8. PubMed ID: 25872704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrolysis of municipal solid waste compost: Pilot plant evaluation as a sustainable practise of waste management.
    Palma A; Clemente-Castro S; Ruiz-Montoya M; Giráldez I; Díaz MJ
    Waste Manag Res; 2023 Oct; ():734242X231200744. PubMed ID: 37791483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor.
    Song Y; Tahmasebi A; Yu J
    Bioresour Technol; 2014 Dec; 174():204-11. PubMed ID: 25463801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam.
    Van Nguyen Q; Choi YS; Choi SK; Jeong YW; Kwon YS
    J Environ Manage; 2019 May; 237():24-29. PubMed ID: 30780052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.