These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38067808)
1. Laser Heterodyne Detection Based on Photon Time-Domain Differential Detection Avoiding the Effect of Decoherence Phase Noise. Guan C; Zhang Z; Jia F; Zhao Y Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067808 [TBL] [Abstract][Full Text] [Related]
2. Parallel array signal processing technology for spatial phase distortion correction in heterodyne detection. Liu Y; Zheng M; Xu M; Fu G Opt Express; 2022 Jan; 30(2):1651-1663. PubMed ID: 35209321 [TBL] [Abstract][Full Text] [Related]
3. Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD. Luo H; Yuan X; Zeng Y Opt Express; 2013 Aug; 21(16):18983-93. PubMed ID: 23938813 [TBL] [Abstract][Full Text] [Related]
4. Analysis of a heterodyne detection system affected by irradiance and phase fluctuations in slant atmospheric turbulence. Tan Z; Ke X Appl Opt; 2018 Nov; 57(32):9596-9603. PubMed ID: 30461740 [TBL] [Abstract][Full Text] [Related]
6. Signal-to-noise ratio in squeezed-light laser radar. Rubin MA; Kaushik S Appl Opt; 2009 Aug; 48(23):4597-609. PubMed ID: 19668274 [TBL] [Abstract][Full Text] [Related]
7. Accurate phase detection in time-domain heterodyne SFG spectroscopy. Mirzajani N; Keenan CL; Melton SR; King SB Opt Express; 2022 Oct; 30(21):39162-39174. PubMed ID: 36258463 [TBL] [Abstract][Full Text] [Related]
8. Photon number measurement using heterodyne method for a detector's quantum efficiency determination based on spontaneous parametric down-conversion. Samoilenko AA; Levin GG Appl Opt; 2019 Dec; 58(36):9856-9860. PubMed ID: 31873630 [TBL] [Abstract][Full Text] [Related]
9. All-fiber coherent laser image Lidar based on phase correction. Shi X; Sun J; Jang P; Lu W; Wang Q; Wang Q Opt Express; 2019 Sep; 27(19):26432-26445. PubMed ID: 31674525 [TBL] [Abstract][Full Text] [Related]
10. Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection. Teng HK; Lang KC Appl Opt; 2008 Dec; 47(36):6860-70. PubMed ID: 19104537 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Error Probability and Signal-to-Noise Ratio between a Coherent Heterodyne and a Photon-Limited Laser Communications System. Pistoresi DJ Appl Opt; 1969 Sep; 8(9):1811-3. PubMed ID: 20072526 [TBL] [Abstract][Full Text] [Related]
12. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry. Egan MJ; Colón AM; Angel SM; Sharma SK Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290 [TBL] [Abstract][Full Text] [Related]
14. Spatial decoherence compensation algorithm for a target speckle field in heterodyne detection based on frequency analysis and time translation. Geng J; Feng Z; Cao C; Feng S; Xu X; Shang Y; Wu Z; Yan X Opt Express; 2021 Nov; 29(24):39016-39026. PubMed ID: 34809273 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous detection of multi-component greenhouse gases based on an all-fibered near-infrared single-channel frequency-division multiplexing wavelength-modulated laser heterodyne radiometer. Sun C; He X; Zhang K; Bai J; Liu X Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122434. PubMed ID: 36773419 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising. Jang U; Nam Y; Kim DH; Hwang D Neuroimage; 2013 Apr; 70():308-16. PubMed ID: 23296184 [TBL] [Abstract][Full Text] [Related]
17. High SNR Φ-OTDR with Multi-Transverse Modes Heterodyne Matched-Filtering Technology. Liu Y; Yang J; Wu B; Lu B; Shuai L; Wang Z; Ye L; Ying K; Ye Q; Qu R; Cai H Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833536 [TBL] [Abstract][Full Text] [Related]
18. SNR dependence of measurement stability of heterodyne phase-sensitive optical time-domain reflectometry. Lu Y; Yu Z; Ju Z; Hu X; Chen M; Meng Z Appl Opt; 2020 Jul; 59(21):6333-6339. PubMed ID: 32749297 [TBL] [Abstract][Full Text] [Related]
19. Portable Pulsed Coherent Lidar for Noncooperation Targets at the Few-Photon Level. Pang C; Zhang Q; Li Z; Wu G Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801721 [TBL] [Abstract][Full Text] [Related]
20. Analyzing the performance of pseudo-random single photon counting ranging Lidar. Yu Y; Liu B; Chen Z Appl Opt; 2018 Sep; 57(27):7733-7739. PubMed ID: 30462035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]