These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38067948)
1. Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression. Wang M; Chen Z; Zhan H; Zhang J; Wu X; Jiang D; Guo Q Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067948 [TBL] [Abstract][Full Text] [Related]
2. Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques. Kaya E; Argunsah H Comput Methods Biomech Biomed Engin; 2024 Sep; ():1-11. PubMed ID: 39235388 [TBL] [Abstract][Full Text] [Related]
3. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach. Song Q; Ma X; Liu Y Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381 [TBL] [Abstract][Full Text] [Related]
4. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning. Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741 [No Abstract] [Full Text] [Related]
5. EMG-Based Estimation of Lower Limb Joint Angles and Moments Using Long Short-Term Memory Network. Truong MTN; Ali AEA; Owaki D; Hayashibe M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992041 [TBL] [Abstract][Full Text] [Related]
6. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model. Ding Q; Han J; Zhao X IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography. Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573 [TBL] [Abstract][Full Text] [Related]
8. Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning. Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM IEEE Trans Neural Syst Rehabil Eng; 2022; 30():600-609. PubMed ID: 35239487 [TBL] [Abstract][Full Text] [Related]
9. Gaussian Process Autoregression for Joint Angle Prediction Based on sEMG Signals. Liang J; Shi Z; Zhu F; Chen W; Chen X; Li Y Front Public Health; 2021; 9():685596. PubMed ID: 34095080 [TBL] [Abstract][Full Text] [Related]
10. Ankle Joint Torque Prediction Using an NMS Solver Informed-ANN Model and Transfer Learning. Zhang L; Zhu X; Gutierrez-Farewik EM; Wang R IEEE J Biomed Health Inform; 2022 Dec; 26(12):5895-5906. PubMed ID: 36112547 [TBL] [Abstract][Full Text] [Related]
11. Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study. Lam SK; Vujaklija I Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640917 [TBL] [Abstract][Full Text] [Related]
12. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature. Ma X; Liu Y; Song Q; Wang C Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326 [TBL] [Abstract][Full Text] [Related]
13. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations. Song R; Tong KY Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429 [TBL] [Abstract][Full Text] [Related]
14. Estimation of Joint Torque by EMG-Driven Neuromusculoskeletal Models and LSTM Networks. Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3722-3731. PubMed ID: 37708013 [TBL] [Abstract][Full Text] [Related]
15. Influence of Input Features and EMG Type on Ankle Joint Torque Prediction With Support Vector Regression. Kizyte A; Lei Y; Wang R IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4286-4294. PubMed ID: 37815967 [TBL] [Abstract][Full Text] [Related]
16. Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals. Guo W; Ma C; Wang Z; Zhang H; Farina D; Jiang N; Lin C J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326941 [No Abstract] [Full Text] [Related]
17. Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification. Zhang L; Zhang X; Zhu X; Wang R; Gutierrez-Farewik EM Front Neurosci; 2023; 17():1254088. PubMed ID: 37712095 [TBL] [Abstract][Full Text] [Related]
18. A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles. Du J; Liu Z; Dong W; Zhang W; Miao Z Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275542 [TBL] [Abstract][Full Text] [Related]
19. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks. Bian Q; Castellani M; Shepherd D; Duan J; Ding Z IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960 [TBL] [Abstract][Full Text] [Related]
20. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography. Ziai A; Menon C J Neuroeng Rehabil; 2011 Sep; 8():56. PubMed ID: 21943179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]