These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38067948)

  • 21. Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb.
    Nozaki D; Nakazawa K; Akai M
    J Neurophysiol; 2005 May; 93(5):2614-24. PubMed ID: 15647398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG.
    Osu R; Franklin DW; Kato H; Gomi H; Domen K; Yoshioka T; Kawato M
    J Neurophysiol; 2002 Aug; 88(2):991-1004. PubMed ID: 12163548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks.
    Schulte RV; Zondag M; Buurke JH; Prinsen EC
    Front Robot AI; 2022; 9():869476. PubMed ID: 35546902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds.
    Zhang Q; Fragnito N; Franz JR; Sharma N
    J Neuroeng Rehabil; 2022 Aug; 19(1):86. PubMed ID: 35945600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model.
    Li J; Yue S; Pan L
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks.
    Zangene AR; Abbasi A; Nazarpour K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous estimation of finger joint angles using muscle activation inputs from surface EMG signals.
    Ngeo J; Tamei T; Shibata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2756-9. PubMed ID: 23366496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A neuromusculoskeletal model of the human lower limb: towards EMG-driven actuation of multiple joints in powered orthoses.
    Sartori M; Reggiani M; Lloyd DG; Pagello E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975441. PubMed ID: 22275641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Co-driven Functional Electrical Stimulation Control Strategy by Dynamic Surface Electromyography and Joint Angle.
    Xu R; Zhao X; Wang Z; Zhang H; Meng L; Ming D
    Front Neurosci; 2022; 16():909602. PubMed ID: 35898409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals.
    Zangene AR; Williams Samuel O; Abbasi A; Nazarpour K; McEwan AA; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.
    Meyer AJ; Patten C; Fregly BJ
    PLoS One; 2017; 12(7):e0179698. PubMed ID: 28700708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multijoint upper limb torque estimation from sEMG measurements.
    Bueno DR; Montano L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7233-6. PubMed ID: 24111414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint Torque and Mechanical Power of Lower Extremity and Its Relevance to Hamstring Strain during Sprint Running.
    Zhong Y; Fu W; Wei S; Li Q; Liu Y
    J Healthc Eng; 2017; 2017():8927415. PubMed ID: 29065661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model.
    de Oliveira LF; Menegaldo LL
    J Biomech; 2010 Oct; 43(14):2816-21. PubMed ID: 20541763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upper Extremity Muscle Activation Pattern Prediction Through Synergy Extrapolation and Electromyography-Driven Modeling.
    Tahmid S; Font-Llagunes JM; Yang J
    J Biomech Eng; 2024 Jan; 146(1):. PubMed ID: 37902326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of Sonomyographic and Electromyographic Sensing for Continuous Estimation of Joint Torque During Ambulation on Multiple Terrains.
    Rabe KG; Lenzi T; Fey NP
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2635-2644. PubMed ID: 34878978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.