These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38067988)

  • 1. Estimating the Inertia Tensor Components of an Asymmetrical Spacecraft When Removing It from the Operational Orbit at the End of Its Active Life.
    Sedelnikov AV; Orlov DI; Bratkova ME; Khnyryova ES
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets.
    Albee K; Oestreich C; Specht C; TerĂ¡n Espinoza A; Todd J; Hokaj I; Lampariello R; Linares R
    Front Robot AI; 2021; 8():641338. PubMed ID: 34604314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the disturbing effect on the aist small spacecraft based on the measurements data.
    Sedelnikov AV; Salmin VV
    Sci Rep; 2022 Jan; 12(1):1300. PubMed ID: 35079085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing debris strikes in spacecraft telemetry: Development and comparison of various techniques.
    Bennett AA; Schaub H; Carpenter R
    Acta Astronaut; 2021 Apr; 181():516-529. PubMed ID: 34158677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic of the radiation field in low Earth orbit and in deep space.
    Reitz G
    Z Med Phys; 2008; 18(4):233-43. PubMed ID: 19205293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated Impact-Based Capture of a Spinning Object by a Dual-Arm Space Robot.
    Nagaoka K; Kameoka R; Yoshida K
    Front Robot AI; 2018; 5():115. PubMed ID: 33500994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's magnetosphere.
    Getselev IV; Ignatiev PP; Kabashova NA; Kontor NN; Moszhukhina AR; Timofeev GA; Khotilovskaya TG
    Adv Space Res; 1992; 12(2-3):441-4. PubMed ID: 11537042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cost of (Un)regulation: Shrinking Earth's orbits and the need for sustainable space governance.
    Martin-Lawson D; Paladini S; Saha K; Yerushalmi E
    J Environ Manage; 2024 Jan; 349():119382. PubMed ID: 37951104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGB-D based multi-modal deep learning for spacecraft and debris recognition.
    AlDahoul N; Karim HA; Momo MA
    Sci Rep; 2022 Mar; 12(1):3924. PubMed ID: 35273245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SU-Net: pose estimation network for non-cooperative spacecraft on-orbit.
    Gao H; Li Z; Wang N; Yang J; Dang D
    Sci Rep; 2023 Jul; 13(1):11780. PubMed ID: 37479871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the Romanian Radar Sensor for Space Surveillance and Tracking Activities.
    Ionescu L; Rusu-Casandra A; Bira C; Tatomirescu A; Tramandan I; Scagnoli R; Istriteanu D; Popa AE
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of space debris on orbital resource in life cycle assessment: A proposed method and case study.
    Maury T; Loubet P; Trisolini M; Gallice A; Sonnemann G; Colombo C
    Sci Total Environ; 2019 Jun; 667():780-791. PubMed ID: 30851611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the integration of orbital space use in Life Cycle Impact Assessment.
    Maury T; Loubet P; Ouziel J; Saint-Amand M; Dariol L; Sonnemann G
    Sci Total Environ; 2017 Oct; 595():642-650. PubMed ID: 28402917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of Spacecraft Magnetic Field Noise: Initial Korean Pathfinder Lunar Orbiter MAGnetometer Observation in Solar Wind.
    Lee J; Jin H; Kim KH; Park H; Jo W; Jang Y; Kang H; Kim E; Choi YJ
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The radiation environment in low-Earth orbit.
    Badhwar GD
    Radiat Res; 1997 Nov; 148(5 Suppl):S3-10. PubMed ID: 9355850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos in spacecraft attitude motion in Earth's magnetic field.
    Beletsky VV; Lopes RV; Pivovarov ML
    Chaos; 1999 Jun; 9(2):493-498. PubMed ID: 12779845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Space radiation dosimetry in low-Earth orbit and beyond.
    Benton ER; Benton EV
    Nucl Instrum Methods Phys Res B; 2001 Sep; 184(1-2):255-94. PubMed ID: 11863032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous Trajectory Generation Comparison for De-Orbiting with Multiple Collision Avoidance.
    Raigoza K; Sands T
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications.
    Niederwieser T; Kociolek P; Klaus D
    Life Sci Space Res (Amst); 2018 Feb; 16():8-17. PubMed ID: 29475523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.