These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38068037)

  • 1. Zinc and Lead Metallurgical Slags as a Potential Source of Metal Recovery: A Review.
    Nowińska K; Adamczyk Z
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.
    Potysz A; van Hullebusch ED; Kierczak J
    J Environ Manage; 2018 Aug; 219():138-152. PubMed ID: 29738933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability.
    Morrison AL; Swierczek Z; Gulson BL
    Environ Pollut; 2016 Mar; 210():271-81. PubMed ID: 26784748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of recovery of metals from slags.
    Shen H; Forssberg E
    Waste Manag; 2003; 23(10):933-49. PubMed ID: 14614927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.
    Maweja K; Mukongo T; Mutombo I
    J Hazard Mater; 2009 May; 164(2-3):856-62. PubMed ID: 18848396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanistic understanding of potential bioaccessibility of toxic heavy metals in the indigenous zinc smelting slags with multidisciplinary characterization.
    Xu DM; Fu RB
    J Hazard Mater; 2022 Mar; 425():127864. PubMed ID: 34915297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal mobilization from metallurgical wastes by soil organic acids.
    Potysz A; Grybos M; Kierczak J; Guibaud G; Fondaneche P; Lens PN; van Hullebusch ED
    Chemosphere; 2017 Jul; 178():197-211. PubMed ID: 28324841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans.
    Mikoda B; Potysz A; Kmiecik E
    J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.
    Yin NH; Sivry Y; Guyot F; Lens PN; van Hullebusch ED
    J Environ Manage; 2016 Sep; 180():310-23. PubMed ID: 27240207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.
    Wang J; Huang Q; Li T; Xin B; Chen S; Guo X; Liu C; Li Y
    J Environ Manage; 2015 Aug; 159():11-17. PubMed ID: 25996622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario.
    Xu DM; Fu RB
    J Hazard Mater; 2022 Sep; 437():129368. PubMed ID: 35897171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of pyrometallurgical slags on sunflower growth, metal accumulation and rhizosphere microbial communities.
    Agnello AC; Potysz A; Fourdrin C; Huguenot D; Chauhan PS
    Chemosphere; 2018 Oct; 208():626-639. PubMed ID: 29894964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags.
    Morrison AL; Gulson BL
    Sci Total Environ; 2007 Aug; 382(1):30-42. PubMed ID: 17499340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.
    Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B
    J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of annealing treatment on the crystallisation and leaching of dumped base metal smelter slags.
    Maweja K; Mukongo T; Mbaya RK; Mochubele EA
    J Hazard Mater; 2010 Nov; 183(1-3):294-300. PubMed ID: 20674164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching assessment of road materials containing primary lead and zinc slags.
    Barna R; Moszkowicz P; Gervais C
    Waste Manag; 2004; 24(9):945-55. PubMed ID: 15504672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review.
    Zhao Q; Pang L; Wang D
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn isotopes fractionation during slags' weathering: One source of contamination, multiple isotopic signatures.
    Yin NH; van Hullebusch ED; Benedetti M; Lens PNL; Sivry Y
    Chemosphere; 2018 Mar; 195():483-490. PubMed ID: 29274994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching of lead metallurgical slag in citric solutions--implications for disposal and weathering in soil environments.
    Ettler V; Komárková M; Jehlicka J; Coufal P; Hradil D; Machovic V; Delorme F
    Chemosphere; 2004 Nov; 57(7):567-77. PubMed ID: 15488918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.