These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38068132)
1. Strength and Deformation Behavior of Graphene Aerogel of Different Morphologies. Baimova JA; Shcherbinin SA Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068132 [TBL] [Abstract][Full Text] [Related]
2. Multi-scale microstructural construction in ultralight graphene aerogels enables super elasticity and unprecedented durability for impact protection materials. Hu X; Tang Y; Tan L; Zeng F; Wu X; Yang S J Colloid Interface Sci; 2024 Nov; 673():333-345. PubMed ID: 38878368 [TBL] [Abstract][Full Text] [Related]
3. Structurally Stable, High-Strength Graphene Oxide/Carbon Nanotube/Epoxy Resin Aerogels as Three-Dimensional Skeletal Precursors for Wave-Absorbing Materials. Zhang L; Song G; Zhao Z; Ma L; Xu H; Wu G; Song Y; Liu Y; Qiu L; Li X Gels; 2022 Sep; 8(10):. PubMed ID: 36286119 [TBL] [Abstract][Full Text] [Related]
4. Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide. Wang M; Zhang T; Mao D; Yao Y; Zeng X; Ren L; Cai Q; Mateti S; Li LH; Zeng X; Du G; Sun R; Chen Y; Xu JB; Wong CP ACS Nano; 2019 Jul; 13(7):7402-7409. PubMed ID: 31203604 [TBL] [Abstract][Full Text] [Related]
5. The implementation of graphene-based aerogel in the field of supercapacitor. Shaikh JS; Shaikh NS; Mishra YK; Pawar SS; Parveen N; Shewale PM; Sabale S; Kanjanaboos P; Praserthdam S; Lokhande CD Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34125718 [TBL] [Abstract][Full Text] [Related]
6. Chemical modification of graphene aerogels for electrochemical capacitor applications. Hong JY; Wie JJ; Xu Y; Park HS Phys Chem Chem Phys; 2015 Dec; 17(46):30946-62. PubMed ID: 26536234 [TBL] [Abstract][Full Text] [Related]
7. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Kim KH; Oh Y; Islam MF Nat Nanotechnol; 2012 Sep; 7(9):562-6. PubMed ID: 22820743 [TBL] [Abstract][Full Text] [Related]
8. A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. Qi P; Zhu H; Borodich F; Peng Q Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902915 [TBL] [Abstract][Full Text] [Related]
9. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
11. Graphene-Based Aerogels for Biomedical Application. Kim Y; Patel R; Kulkarni CV; Patel M Gels; 2023 Dec; 9(12):. PubMed ID: 38131953 [TBL] [Abstract][Full Text] [Related]
12. Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing. Zeng Z; Wu N; Yang W; Xu H; Liao Y; Li C; Luković M; Yang Y; Zhao S; Su Z; Lu X Small; 2022 Jun; 18(24):e2202047. PubMed ID: 35570715 [TBL] [Abstract][Full Text] [Related]
13. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression. Wang S; Wang C; Khan MB; Chen S Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029 [TBL] [Abstract][Full Text] [Related]
14. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Ge X; Shan Y; Wu L; Mu X; Peng H; Jiang Y Carbohydr Polym; 2018 Oct; 197():277-283. PubMed ID: 30007614 [TBL] [Abstract][Full Text] [Related]
15. Facile approach for a robust graphene/silver nanowires aerogel with high-performance electromagnetic interference shielding. Liu X; Chen T; Liang H; Qin F; Yang H; Guo X RSC Adv; 2018 Dec; 9(1):27-33. PubMed ID: 35521581 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Graphene Aerogel with High Mechanical Stability and Microwave Absorption Ability via Combining Surface Support of Metallic-CNTs and Interfacial Cross-Linking by Magnetic Nanoparticles. Qin Y; Zhang Y; Qi N; Wang Q; Zhang X; Li Y ACS Appl Mater Interfaces; 2019 Mar; 11(10):10409-10417. PubMed ID: 30776887 [TBL] [Abstract][Full Text] [Related]
17. Superelastic graphene aerogel-based metamaterials. Wu M; Geng H; Hu Y; Ma H; Yang C; Chen H; Wen Y; Cheng H; Li C; Liu F; Jiang L; Qu L Nat Commun; 2022 Aug; 13(1):4561. PubMed ID: 35931668 [TBL] [Abstract][Full Text] [Related]
18. Electromagnetic Interference Shielding of Graphene Aerogel with Layered Microstructure Fabricated via Mechanical Compression. Li CB; Li YJ; Zhao Q; Luo Y; Yang GY; Hu Y; Jiang JJ ACS Appl Mater Interfaces; 2020 Jul; 12(27):30686-30694. PubMed ID: 32539330 [TBL] [Abstract][Full Text] [Related]
19. High-efficient adsorption for versatile adsorbates by elastic reduced graphene oxide/Fe Dang A; Liu X; Wang Y; Liu Y; Cheng T; Zada A; Ye F; Deng W; Sun Y; Zhao T; Li T J Hazard Mater; 2023 Sep; 457():131846. PubMed ID: 37320905 [TBL] [Abstract][Full Text] [Related]
20. Low-Velocity Impact Resistance of 3D Re-Entrant Honeycomb Sandwich Structures with CFRP Face Sheets. Cui Z; Qi J; Duan Y; Tie Y; Zheng Y; Yang J; Li C Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]