These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38068216)

  • 1. Naphthalene Monoimides with
    Mutovska M; Simeonova N; Stoyanov S; Zagranyarski Y; Stanchovska S; Marinova D
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur.
    Arisawa M; Yamaguchi M
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32784672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification.
    Geysens P; Evers J; Dehaen W; Fransaer J; Binnemans K
    RSC Adv; 2020 Oct; 10(65):39601-39610. PubMed ID: 35515364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating coordination environment for a high-voltage aqueous copper-chlorine battery.
    Zhang X; Wei H; Li S; Ren B; Jiang J; Qu G; Lv H; Liang G; Chen G; Zhi C; Li H; Liu Z
    Nat Commun; 2023 Oct; 14(1):6738. PubMed ID: 37875485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium-mediated C-S bond activation and transformation: organoiridium(III) thioether, thiolato, sulfinato and thiyl radical compounds. Synthesis, mechanistic, spectral, electrochemical and theoretical aspects.
    Das U; Ghorui T; Adhikari B; Roy S; Pramanik S; Pramanik K
    Dalton Trans; 2015 May; 44(18):8625-39. PubMed ID: 25846942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances of Organosulfur Materials for Rechargeable Metal Batteries.
    Guo W; Wang DY; Chen Q; Fu Y
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103989. PubMed ID: 34825523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of alkyl chain branching on the properties of pyrrolidinium-based ionic electrolytes.
    Al-Masri D; Yunis R; Hollenkamp AF; Doherty CM; Pringle JM
    Phys Chem Chem Phys; 2020 Aug; 22(32):18102-18113. PubMed ID: 32760990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery.
    Yan Y; Robinson SG; Sigman MS; Sanford MS
    J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries.
    Kazemiabnavi S; Zhang Z; Thornton K; Banerjee S
    J Phys Chem B; 2016 Jun; 120(25):5691-702. PubMed ID: 27266487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Energy Aqueous/Organic Hybrid Batteries Enabled by Cu
    Bi S; Zhang Y; Wang H; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312172. PubMed ID: 37853603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes.
    Godet-Bar T; Leprêtre JC; Le Bacq O; Sanchez JY; Deronzier A; Pasturel A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25283-96. PubMed ID: 26355417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes.
    Zuo W; Xu P; Li Y; Liu J
    Nanomaterials (Basel); 2015 Oct; 5(4):1756-1765. PubMed ID: 28347093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.
    Baloch M; Ben Youcef H; Li C; Garcia-Calvo O; Rodriguez LM; Shanmukaraj D; Rojo T; Armand M
    ChemSusChem; 2016 Nov; 9(22):3206-3212. PubMed ID: 27796086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.