BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38068988)

  • 1. Zn
    Sobczak AIS; Ajjan RA; Stewart AJ
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38068988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems.
    Longstaff C; Hogwood J; Gray E; Komorowicz E; Varjú I; Varga Z; Kolev K
    Thromb Haemost; 2016 Mar; 115(3):591-9. PubMed ID: 26632486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of zinc on glycosaminoglycan neutralisation during coagulation.
    Sobczak AIS; Pitt SJ; Stewart AJ
    Metallomics; 2018 Sep; 10(9):1180-1190. PubMed ID: 30132486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc as a cofactor for heparin neutralization by histidine-rich glycoprotein.
    Kluszynski BA; Kim C; Faulk WP
    J Biol Chem; 1997 May; 272(21):13541-7. PubMed ID: 9153200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma'-chain.
    Vu TT; Stafford AR; Leslie BA; Kim PY; Fredenburgh JC; Weitz JI
    J Biol Chem; 2011 Sep; 286(35):30314-30323. PubMed ID: 21757718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma free fatty acid levels influence Zn(2+) -dependent histidine-rich glycoprotein-heparin interactions via an allosteric switch on serum albumin.
    Kassaar O; Schwarz-Linek U; Blindauer CA; Stewart AJ
    J Thromb Haemost; 2015 Jan; 13(1):101-10. PubMed ID: 25353308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nonspecific binding to plasma proteins on the antithrombin activities of unfractionated heparin, low-molecular-weight heparin, and dermatan sulfate.
    Cosmi B; Fredenburgh JC; Rischke J; Hirsh J; Young E; Weitz JI
    Circulation; 1997 Jan; 95(1):118-24. PubMed ID: 8994426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dermatan sulfate is a more potent inhibitor of clot-bound thrombin than unfractionated and low molecular weight heparins.
    Bendayan P; Boccalon H; Dupouy D; Boneu B
    Thromb Haemost; 1994 May; 71(5):576-80. PubMed ID: 8091383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of thrombin generation by heparin and low molecular weight (LMW) heparins in the absence and presence of platelet factor 4 (PF4).
    Padilla A; Gray E; Pepper DS; Barrowcliffe TW
    Br J Haematol; 1992 Oct; 82(2):406-13. PubMed ID: 1329921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rationally designed heparin, M118, has anticoagulant activity similar to unfractionated heparin and different from Lovenox in a cell-based model of thrombin generation.
    Volovyk Z; Monroe DM; Qi Y; Becker R; Hoffman M
    J Thromb Thrombolysis; 2009 Aug; 28(2):132-9. PubMed ID: 19543696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn2+ mediates high affinity binding of heparin to the αC domain of fibrinogen.
    Fredenburgh JC; Leslie BA; Stafford AR; Lim T; Chan HH; Weitz JI
    J Biol Chem; 2013 Oct; 288(41):29394-402. PubMed ID: 23990470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged bleeding time induced by anticoagulant glycosaminoglycans in dogs is associated with the inhibition of thrombin-induced platelet aggregation.
    Kitazato K; Kitazato KT; Sasaki E; Minamiguchi K; Nagase H
    Thromb Res; 2003; 112(1-2):83-91. PubMed ID: 15013278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of low molecular weight heparins and unfractionated heparin after successive subcutaneous administration. A randomized controlled study in healthy volunteers.
    Pindur G; Heiden M; Köhler M
    Arzneimittelforschung; 1993 May; 43(5):542-7. PubMed ID: 8392345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the extrinsic pathway in the activities of low molecular weight heparins.
    Norrheim L; Abildgaard U; Larsen ML; Lindahl AK
    Thromb Res Suppl; 1991; 14():19-27. PubMed ID: 1658967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticoagulant mechanisms of covalent antithrombin-heparin investigated by thrombelastography. Comparison with unfractionated heparin and low-molecular-weight heparin.
    Atkinson HM; Mewhort-Buist TA; Berry LR; Chan AK
    Thromb Haemost; 2009 Jul; 102(1):62-8. PubMed ID: 19572069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histidine-rich glycoprotein binds to cell-surface heparan sulfate via its N-terminal domain following Zn2+ chelation.
    Jones AL; Hulett MD; Parish CR
    J Biol Chem; 2004 Jul; 279(29):30114-22. PubMed ID: 15138272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct oral anticoagulants and heparins: laboratory values and pitfalls in 'bridging therapy'.
    Eller T; Flieder T; Fox V; Gripp T; Dittrich M; Kuhn J; Alban S; Knabbe C; Birschmann I
    Eur J Cardiothorac Surg; 2017 Apr; 51(4):624-632. PubMed ID: 28043992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine-rich glycoprotein plus zinc to neutralize heparin.
    Fu CL; Horn MK
    J Lab Clin Med; 2002 Apr; 139(4):211-7. PubMed ID: 12024108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between ex vivo anti-proteinase (factor Xa and thrombin) assays and in vivo anticoagulant effect of very low molecular weight heparin, CY222.
    Tew CJ; Lane DA; Thompson E; Ireland H; Curtis JR
    Br J Haematol; 1988 Nov; 70(3):335-40. PubMed ID: 2849981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suggestions for global coagulation assays for the assessment of COVID-19 associated hypercoagulability.
    van de Berg TW; Hulshof AM; Nagy M; van Oerle R; Sels JW; van Bussel B; Ten Cate H; Henskens Y; Spronk HMH;
    Thromb Res; 2021 May; 201():84-89. PubMed ID: 33662799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.