BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38069102)

  • 1. Harnessing CRISPR/Cas9 for Enhanced Disease Resistance in Hot Peppers: A Comparative Study on
    Park JH; Kim H
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum.
    Kim H; Choi J; Won KH
    BMC Plant Biol; 2020 Oct; 20(1):449. PubMed ID: 33004008
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Park SI; Kim HB; Jeon HJ; Kim H
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf-induced callus formation in two cultivars: hot pepper 'CM334' and bell pepper 'Dempsey'.
    Kim H; Lim J
    Plant Signal Behav; 2019; 14(7):1604016. PubMed ID: 30983498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against
    Pramanik D; Shelake RM; Park J; Kim MJ; Hwang I; Park Y; Kim JY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and analysis of highly specific CRISPR/Cas9 editing sites in pepper (Capsicum annuum L.).
    Li G; Zhou Z; Liang L; Song Z; Hu Y; Cui J; Chen W; Hu K; Cheng J
    PLoS One; 2020; 15(12):e0244515. PubMed ID: 33373406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica.
    Zheng Z; Nonomura T; Appiano M; Pavan S; Matsuda Y; Toyoda H; Wolters AM; Visser RG; Bai Y
    PLoS One; 2013; 8(7):e70723. PubMed ID: 23923019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation.
    Kim DS; Hwang BK
    Plant J; 2012 Dec; 72(5):843-55. PubMed ID: 22913752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses.
    Kim DS; Choi HW; Hwang BK
    Planta; 2014 Oct; 240(4):827-39. PubMed ID: 25074588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.).
    Mishra R; Mohanty JN; Mahanty B; Joshi RK
    Planta; 2021 Jun; 254(1):5. PubMed ID: 34132917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application.
    Sun B; Chen H; Gao X
    J Control Release; 2021 Sep; 337():698-717. PubMed ID: 34364918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing powdery mildew resistance in soybean by targeted mutation of MLO genes using the CRISPR/Cas9 system.
    Bui TP; Le H; Ta DT; Nguyen CX; Le NT; Tran TT; Van Nguyen P; Stacey G; Stacey MG; Pham NB; Chu HH; Do PT
    BMC Plant Biol; 2023 Nov; 23(1):533. PubMed ID: 37919649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 to generate plant immunity against pathogen.
    Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S
    Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Protoplast Isolation and Transformation for a Pilot Study of Genome Editing in Peanut by Targeting the Allergen Gene
    Biswas S; Wahl NJ; Thomson MJ; Cason JM; McCutchen BF; Septiningsih EM
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding.
    González MN; Massa GA; Andersson M; Storani L; Olsson N; Décima Oneto CA; Hofvander P; Feingold SE
    Methods Mol Biol; 2023; 2653():333-361. PubMed ID: 36995636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 18. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents.
    Zou G; Xiao M; Chai S; Zhu Z; Wang Y; Zhou Z
    Microb Biotechnol; 2021 Nov; 14(6):2343-2355. PubMed ID: 32841542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.