These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 38069156)
1. Co-Expression Network Analysis of the Transcriptome Identified Hub Genes and Pathways Responding to Saline-Alkaline Stress in Wang H; Ye L; Zhou L; Yu J; Pang B; Zuo D; Gu L; Zhu B; Du X; Wang H Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069156 [TBL] [Abstract][Full Text] [Related]
2. Integrative Analysis of the Metabolome and Transcriptome of Ma S; Lv L; Meng C; Zhang C; Li Y J Agric Food Chem; 2020 Dec; 68(50):14781-14789. PubMed ID: 33274637 [TBL] [Abstract][Full Text] [Related]
3. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. Ukwatta J; Pabuayon ICM; Park J; Chen J; Chai X; Zhang H; Zhu JK; Xin Z; Shi H Planta; 2021 Oct; 254(5):98. PubMed ID: 34657208 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Analysis of Abscisic Acid Biosynthesis, Catabolism, and Signaling in Sorghum Bicolor under Saline-Alkali Stress. Ma S; Lv L; Meng C; Zhou C; Fu J; Shen X; Zhang C; Li Y Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31817046 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system. Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166 [TBL] [Abstract][Full Text] [Related]
6. Weighted gene co-expression network analysis reveals hub genes regulating response to salt stress in peanut. Wang F; Miao H; Zhang S; Hu X; Chu Y; Yang W; Wang H; Wang J; Shan S; Chen J BMC Plant Biol; 2024 May; 24(1):425. PubMed ID: 38769518 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress. Xu Y; Lu JH; Zhang JD; Liu DK; Wang Y; Niu QD; Huang DD BMC Plant Biol; 2021 Dec; 21(1):599. PubMed ID: 34915868 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress. Li Q; Ma C; Tai H; Qiu H; Yang A PLoS One; 2020; 15(12):e0243112. PubMed ID: 33259539 [TBL] [Abstract][Full Text] [Related]
10. Physio-chemical and co-expression network analysis associated with salt stress in sorghum. Choi S; Kang Y; Lee S; Jeon DH; Seo S; Lee TH; Kim C Front Biosci (Landmark Ed); 2022 Feb; 27(2):55. PubMed ID: 35226998 [TBL] [Abstract][Full Text] [Related]
11. Wu R; Kong L; Wu X; Gao J; Niu T; Li J; Li Z; Dai L Funct Plant Biol; 2023 Sep; 50(9):677-690. PubMed ID: 37423605 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P; Gu M BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327 [TBL] [Abstract][Full Text] [Related]
13. Application of compound material alleviates saline and alkaline stress in cotton leaves through regulation of the transcriptome. An M; Wang X; Chang D; Wang S; Hong D; Fan H; Wang K BMC Plant Biol; 2020 Oct; 20(1):462. PubMed ID: 33032521 [TBL] [Abstract][Full Text] [Related]
14. Protoplast Dissociation and Transcriptome Analysis Provides Insights to Salt Stress Response in Cotton. Liu Q; Li P; Cheng S; Zhao Z; Liu Y; Wei Y; Lu Q; Han J; Cai X; Zhou Z; Umer MJ; Peng R; Zhang B; Liu F Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269989 [TBL] [Abstract][Full Text] [Related]
15. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. Gelli M; Duo Y; Konda AR; Zhang C; Holding D; Dweikat I BMC Genomics; 2014 Mar; 15():179. PubMed ID: 24597475 [TBL] [Abstract][Full Text] [Related]
16. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Yu Y; Huang W; Chen H; Wu G; Yuan H; Song X; Kang Q; Zhao D; Jiang W; Liu Y; Wu J; Cheng L; Yao Y; Guan F Gene; 2014 Oct; 549(1):113-22. PubMed ID: 25058012 [TBL] [Abstract][Full Text] [Related]
17. Cotton transcriptome analysis reveals novel biological pathways that eliminate reactive oxygen species (ROS) under sodium bicarbonate (NaHCO Fan Y; Lu X; Chen X; Wang J; Wang D; Wang S; Guo L; Rui C; Zhang Y; Cui R; Malik WA; Wang Q; Chen C; Yu JZ; Ye W Genomics; 2021 May; 113(3):1157-1169. PubMed ID: 33689783 [TBL] [Abstract][Full Text] [Related]
18. Comparative Analysis of Physiological, Hormonal and Transcriptomic Responses Reveal Mechanisms of Saline-Alkali Tolerance in Autotetraploid Rice ( Zhang C; Meng W; Wang Y; Zhou Y; Wang S; Qi F; Wang N; Ma J Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555786 [TBL] [Abstract][Full Text] [Related]
19. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Wang J; Hu K; Wang J; Gong Z; Li S; Deng X; Li Y Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569762 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome and coexpression network analysis revealed the regulatory mechanism of Astragalus cicer L. in response to salt stress. Zhang Y; Dong W; Ma H; Zhao C; Ma F; Wang Y; Zheng X; Jin M BMC Plant Biol; 2024 Aug; 24(1):817. PubMed ID: 39210248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]