BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 38069223)

  • 61. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts.
    Pasero P; Vindigni A
    Annu Rev Genet; 2017 Nov; 51():477-499. PubMed ID: 29178820
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Okazaki fragment processing-independent role for human Dna2 enzyme during DNA replication.
    Duxin JP; Moore HR; Sidorova J; Karanja K; Honaker Y; Dao B; Piwnica-Worms H; Campbell JL; Monnat RJ; Stewart SA
    J Biol Chem; 2012 Jun; 287(26):21980-91. PubMed ID: 22570476
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response.
    Xing M; Wang X; Palmai-Pallag T; Shen H; Helleday T; Hickson ID; Ying S
    Oncotarget; 2015 Nov; 6(35):37638-46. PubMed ID: 26415217
    [TBL] [Abstract][Full Text] [Related]  

  • 65. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication.
    Mackay HL; Stone HR; Ellis K; Ronson GE; Walker AK; Starowicz K; Garvin AJ; van Eijk P; Vaitsiankova A; Vijayendran S; Beesley JF; Petermann E; Brown EJ; Densham RM; Reed SH; Dobbs F; Saponaro M; Morris JR
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260523
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanisms of replication fork protection: a safeguard for genome stability.
    Errico A; Costanzo V
    Crit Rev Biochem Mol Biol; 2012; 47(3):222-35. PubMed ID: 22324461
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distinct roles of Mus81, Yen1, Slx1-Slx4, and Rad1 nucleases in the repair of replication-born double-strand breaks by sister chromatid exchange.
    Muñoz-Galván S; Tous C; Blanco MG; Schwartz EK; Ehmsen KT; West SC; Heyer WD; Aguilera A
    Mol Cell Biol; 2012 May; 32(9):1592-603. PubMed ID: 22354996
    [TBL] [Abstract][Full Text] [Related]  

  • 68. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability.
    Whalen JM; Freudenreich CH
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32526925
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metnase Mediates Loading of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication Forks.
    Kim HS; Williamson EA; Nickoloff JA; Hromas RA; Lee SH
    J Biol Chem; 2017 Jan; 292(4):1414-1425. PubMed ID: 27974460
    [TBL] [Abstract][Full Text] [Related]  

  • 72. PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice.
    Mochizuki AL; Katanaya A; Hayashi E; Hosokawa M; Moribe E; Motegi A; Ishiai M; Takata M; Kondoh G; Watanabe H; Nakatsuji N; Chuma S
    Mol Cell Biol; 2017 Dec; 37(23):. PubMed ID: 28894029
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing.
    Hu J; Sun L; Shen F; Chen Y; Hua Y; Liu Y; Zhang M; Hu Y; Wang Q; Xu W; Sun F; Ji J; Murray JM; Carr AM; Kong D
    Cell; 2012 Jun; 149(6):1221-32. PubMed ID: 22682245
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.
    Hamperl S; Bocek MJ; Saldivar JC; Swigut T; Cimprich KA
    Cell; 2017 Aug; 170(4):774-786.e19. PubMed ID: 28802045
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanism for inverted-repeat recombination induced by a replication fork barrier.
    Marie L; Symington LS
    Nat Commun; 2022 Jan; 13(1):32. PubMed ID: 35013185
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Promotion of Genomic Instability in Human Fibroblasts by Adenovirus 12 Early Region 1B 55K Protein in the Absence of Viral Infection.
    Abualfaraj T; Hagkarim NC; Hollingworth R; Grange L; Jhujh S; Stewart GS; Grand RJ
    Viruses; 2021 Dec; 13(12):. PubMed ID: 34960712
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of replication fork speed: Mechanisms and impact on genomic stability.
    Merchut-Maya JM; Bartek J; Maya-Mendoza A
    DNA Repair (Amst); 2019 Sep; 81():102654. PubMed ID: 31320249
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases.
    Fekairi S; Scaglione S; Chahwan C; Taylor ER; Tissier A; Coulon S; Dong MQ; Ruse C; Yates JR; Russell P; Fuchs RP; McGowan CH; Gaillard PHL
    Cell; 2009 Jul; 138(1):78-89. PubMed ID: 19596236
    [TBL] [Abstract][Full Text] [Related]  

  • 80. S-phase-dependent p50/NF-кB1 phosphorylation in response to ATR and replication stress acts to maintain genomic stability.
    Crawley CD; Kang S; Bernal GM; Wahlstrom JS; Voce DJ; Cahill KE; Garofalo A; Raleigh DR; Weichselbaum RR; Yamini B
    Cell Cycle; 2015; 14(4):566-76. PubMed ID: 25590437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.