These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38069265)

  • 21. Space exploration, Mars, and the nervous system.
    Kalb R; Solomon D
    Arch Neurol; 2007 Apr; 64(4):485-90. PubMed ID: 17420309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating the Lunar Environment: Partial Weightbearing and High-LET Radiation-Induce Bone Loss and Increase Sclerostin-Positive Osteocytes.
    Macias BR; Lima F; Swift JM; Shirazi-Fard Y; Greene ES; Allen MR; Fluckey J; Hogan HA; Braby L; Wang S; Bloomfield SA
    Radiat Res; 2016 Sep; 186(3):254-63. PubMed ID: 27538114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development.
    Manzano A; Herranz R; den Toom LA; Te Slaa S; Borst G; Visser M; Medina FJ; van Loon JJWA
    NPJ Microgravity; 2018; 4():9. PubMed ID: 29644337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent developments in space food for exploration missions: A review.
    Pandith JA; Neekhra S; Ahmad S; Sheikh RA
    Life Sci Space Res (Amst); 2023 Feb; 36():123-134. PubMed ID: 36682821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.
    Valbuena MA; Manzano A; Vandenbrink JP; Pereda-Loth V; Carnero-Diaz E; Edelmann RE; Kiss JZ; Herranz R; Medina FJ
    Planta; 2018 Sep; 248(3):691-704. PubMed ID: 29948124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
    Ruden DM; Bolnick A; Awonuga A; Abdulhasan M; Perez G; Puscheck EE; Rappolee DA
    Stem Cells Dev; 2018 Sep; 27(18):1230-1236. PubMed ID: 29562866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.
    Bradley JH; Stein R; Randolph B; Molina E; Arnold JP; Gregg RK
    Life Sci Space Res (Amst); 2017 Nov; 15():55-61. PubMed ID: 29198314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Farming in space: environmental and biophysical concerns.
    Monje O; Stutte GW; Goins GD; Porterfield DM; Bingham GE
    Adv Space Res; 2003; 31(1):151-67. PubMed ID: 12577999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival.
    Pani G; Verslegers M; Quintens R; Samari N; de Saint-Georges L; van Oostveldt P; Baatout S; Benotmane MA
    PLoS One; 2016; 11(5):e0155260. PubMed ID: 27203085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity.
    Convertino VA
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S45-52. PubMed ID: 8897404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts.
    Paul AM; Mhatre SD; Cekanaviciute E; Schreurs AS; Tahimic CGT; Globus RK; Anand S; Crucian BE; Bhattacharya S
    Front Immunol; 2020; 11():564950. PubMed ID: 33224136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Astronauts eye-head coordination dysfunction over the course of twenty space shuttle flights.
    Kolev OI; Clement G; Reschke MF
    J Vestib Res; 2023; 33(5):313-324. PubMed ID: 37248929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Space flight, microgravity, stress, and immune responses.
    Sonnenfeld G
    Adv Space Res; 1999; 23(12):1945-53. PubMed ID: 11710376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detrimental effects of simulated microgravity on mast cell homeostasis and function.
    Kim M; Jang G; Kim KS; Shin J
    Front Immunol; 2022; 13():1055531. PubMed ID: 36591304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous Exposure of Cultured Human Lymphoblastic Cells to Simulated Microgravity and Radiation Increases Chromosome Aberrations.
    Yamanouchi S; Rhone J; Mao JH; Fujiwara K; Saganti PB; Takahashi A; Hada M
    Life (Basel); 2020 Sep; 10(9):. PubMed ID: 32927618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of weightlessness on the human organism and mammalian cells.
    Pietsch J; Bauer J; Egli M; Infanger M; Wise P; Ulbrich C; Grimm D
    Curr Mol Med; 2011 Jul; 11(5):350-64. PubMed ID: 21568935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life sciences issues affecting space exploration.
    White RJ; Leonard JI; Leveton L; Gaiser K; Teeter R
    Microgravity Sci Technol; 1990 Dec; 3(3):173-9. PubMed ID: 11541483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can 3D bioprinting be a key for exploratory missions and human settlements on the Moon and Mars?
    Cubo-Mateo N; Podhajsky S; Knickmann D; Slenzka K; Ghidini T; Gelinsky M
    Biofabrication; 2020 Sep; 12(4):043001. PubMed ID: 32975214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growing crops for space explorers on the moon, Mars, or in space.
    Salisbury FB
    Adv Space Biol Med; 1999; 7():131-62. PubMed ID: 10660775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.