These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 38069266)
1. Identifying Explainable Machine Learning Models and a Novel SFRP2 Yang Z; Zhou D; Huang J Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069266 [TBL] [Abstract][Full Text] [Related]
2. Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma. Guo QH; Xie FC; Zhong FM; Wen W; Zhang XR; Yu XJ; Wang XL; Huang B; Li LP; Wang XZ Cancer Med; 2024 Apr; 13(7):e7161. PubMed ID: 38613173 [TBL] [Abstract][Full Text] [Related]
3. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
4. Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning. Liu J; Liu L; Antwi PA; Luo Y; Liang F Front Genet; 2022; 13():858466. PubMed ID: 35719392 [No Abstract] [Full Text] [Related]
5. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Duan Y; Xu X Front Endocrinol (Lausanne); 2023; 14():1193622. PubMed ID: 37383389 [TBL] [Abstract][Full Text] [Related]
6. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733 [TBL] [Abstract][Full Text] [Related]
7. Establish of an Initial Platinum-Resistance Predictor in High-Grade Serous Ovarian Cancer Patients Regardless of Homologous Recombination Deficiency Status. Li Y; Nie Y; Guo H; Guo H; Ha C; Li Y Front Oncol; 2022; 12():847085. PubMed ID: 35372049 [TBL] [Abstract][Full Text] [Related]
8. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
9. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
10. Multifactor assessment of ovarian cancer reveals immunologically interpretable molecular subtypes with distinct prognoses. Guo Y; Li S; Li C; Wang L; Ning W Front Immunol; 2023; 14():1326018. PubMed ID: 38143770 [TBL] [Abstract][Full Text] [Related]
11. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. Li MX; Sun XM; Cheng WG; Ruan HJ; Liu K; Chen P; Xu HJ; Gao SG; Feng XS; Qi YJ BMC Cancer; 2021 Aug; 21(1):906. PubMed ID: 34372798 [TBL] [Abstract][Full Text] [Related]
12. Explainable Machine Learning Model to Prediction EGFR Mutation in Lung Cancer. Yang R; Xiong X; Wang H; Li W Front Oncol; 2022; 12():924144. PubMed ID: 35814445 [TBL] [Abstract][Full Text] [Related]
13. Identification of STEAP3-based molecular subtype and risk model in ovarian cancer. Zhao Z; Sun C; Hou J; Yu P; Wei Y; Bai R; Yang P J Ovarian Res; 2023 Jun; 16(1):126. PubMed ID: 37386521 [TBL] [Abstract][Full Text] [Related]
14. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq. Zhang D; Lu W; Cui S; Mei H; Wu X; Zhuo Z J Ovarian Res; 2022 Nov; 15(1):123. PubMed ID: 36424614 [TBL] [Abstract][Full Text] [Related]
15. Increased Expression of Zou R; Xu H; Li F; Wang S; Zhu L DNA Cell Biol; 2021 Jan; 40(1):36-60. PubMed ID: 33180631 [TBL] [Abstract][Full Text] [Related]
16. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Li J; Li X; Ma J; Wang F; Cui S; Ye Z Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713 [TBL] [Abstract][Full Text] [Related]
17. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Yagin FH; Cicek İB; Alkhateeb A; Yagin B; Colak C; Azzeh M; Akbulut S Comput Biol Med; 2023 Mar; 154():106619. PubMed ID: 36738712 [TBL] [Abstract][Full Text] [Related]
18. Development of a Novel Intra-Operative Score to Record Diseases' Anatomic Fingerprints (ANAFI Score) for the Prediction of Complete Cytoreduction in Advanced-Stage Ovarian Cancer by Using Machine Learning and Explainable Artificial Intelligence. Laios A; Kalampokis E; Johnson R; Munot S; Thangavelu A; Hutson R; Broadhead T; Theophilou G; Nugent D; De Jong D Cancers (Basel); 2023 Feb; 15(3):. PubMed ID: 36765924 [TBL] [Abstract][Full Text] [Related]
19. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
20. A novel tumor mutational burden-based risk model predicts prognosis and correlates with immune infiltration in ovarian cancer. Wang H; Liu J; Yang J; Wang Z; Zhang Z; Peng J; Wang Y; Hong L Front Immunol; 2022; 13():943389. PubMed ID: 36003381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]