These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 38069266)

  • 21. Metabolism-related gene vaccines and immune infiltration in ovarian cancer: A novel risk score model of machine learning.
    Fu Y; Huang Z; Huang J; Xiong J; Liu H; Wan X
    J Gene Med; 2024 Jan; 26(1):e3568. PubMed ID: 37455244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative Analysis From Multicenter Studies Identifies a WGCNA-Derived Cancer-Associated Fibroblast Signature for Ovarian Cancer.
    Feng S; Xu Y; Dai Z; Yin H; Zhang K; Shen Y
    Front Immunol; 2022; 13():951582. PubMed ID: 35874760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of endoplasmic reticulum stress-associated genes and subtypes for prediction of Alzheimer's disease based on interpretable machine learning.
    Lai Y; Lin X; Lin C; Lin X; Chen Z; Zhang L
    Front Pharmacol; 2022; 13():975774. PubMed ID: 36059957
    [No Abstract]   [Full Text] [Related]  

  • 24. Prediction of the development of acute kidney injury following cardiac surgery by machine learning.
    Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK
    Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: Novel prediction model of prognosis.
    Zheng P; Li N; Zhan X
    Front Endocrinol (Lausanne); 2022; 13():972341. PubMed ID: 36545327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of immune microenvironment subtypes and signature genes for Alzheimer's disease diagnosis and risk prediction based on explainable machine learning.
    Lai Y; Lin P; Lin F; Chen M; Lin C; Lin X; Wu L; Zheng M; Chen J
    Front Immunol; 2022; 13():1046410. PubMed ID: 36569892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A nine-gene signature related to tumor microenvironment predicts overall survival with ovarian cancer.
    Ding Q; Dong S; Wang R; Zhang K; Wang H; Zhou X; Wang J; Wong K; Long Y; Zhu S; Wang W; Ren H; Zeng Y
    Aging (Albany NY); 2020 Mar; 12(6):4879-4895. PubMed ID: 32208363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel immune-related gene signature for risk stratification and prognosis prediction in ovarian cancer.
    Fei H; Han X; Wang Y; Li S
    J Ovarian Res; 2023 Oct; 16(1):205. PubMed ID: 37858138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP.
    Zhang G; Shi Y; Yin P; Liu F; Fang Y; Li X; Zhang Q; Zhang Z
    Front Oncol; 2022; 12():944569. PubMed ID: 35957890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explainable machine learning model for predicting skeletal muscle loss during surgery and adjuvant chemotherapy in ovarian cancer.
    Hsu WH; Ko AT; Weng CS; Chang CL; Jan YT; Lin JB; Chien HJ; Lin WC; Sun FJ; Wu KP; Lee J
    J Cachexia Sarcopenia Muscle; 2023 Oct; 14(5):2044-2053. PubMed ID: 37435785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Machine-Learning Approach to Developing a Predictive Signature Based on Transcriptome Profiling of Ground-Glass Opacities for Accurate Classification and Exploring the Immune Microenvironment of Early-Stage LUAD.
    Zhao Z; Yin W; Peng X; Cai Q; He B; Shi S; Peng W; Tu G; Li Y; Li D; Tao Y; Peng M; Wang X; Yu F
    Front Immunol; 2022; 13():872387. PubMed ID: 35693786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying the Role of Oxidative Stress-Related Genes as Prognostic Biomarkers and Predicting the Response of Immunotherapy and Chemotherapy in Ovarian Cancer.
    Liu Q; Yang X; Yin Y; Zhang H; Yin F; Guo P; Zhang X; Sun C; Li S; Han Y; Yang Z
    Oxid Med Cell Longev; 2022; 2022():6575534. PubMed ID: 36561981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosis and Prediction of Endometrial Carcinoma Using Machine Learning and Artificial Neural Networks Based on Public Databases.
    Zhao D; Zhang Z; Wang Z; Du Z; Wu M; Zhang T; Zhou J; Zhao W; Meng Y
    Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential Prognostic Immune Biomarkers of Overall Survival in Ovarian Cancer Through Comprehensive Bioinformatics Analysis: A Novel Artificial Intelligence Survival Prediction System.
    He T; Huang L; Li J; Wang P; Zhang Z
    Front Med (Lausanne); 2021; 8():587496. PubMed ID: 34109184
    [No Abstract]   [Full Text] [Related]  

  • 36. An explainable machine learning model to solid adnexal masses diagnosis based on clinical data and qualitative ultrasound indicators.
    Fanizzi A; Arezzo F; Cormio G; Comes MC; Cazzato G; Boldrini L; Bove S; Bollino M; Kardhashi A; Silvestris E; Quarto P; Mongelli M; Naglieri E; Signorile R; Loizzi V; Massafra R
    Cancer Med; 2024 Jun; 13(12):e7425. PubMed ID: 38923847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of an Autophagy-Related Signature for Prognosis and Immunotherapy Response Prediction in Ovarian Cancer.
    Ding J; Wang C; Sun Y; Guo J; Liu S; Cheng Z
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A proposed technique for predicting heart disease using machine learning algorithms and an explainable AI method.
    El-Sofany H; Bouallegue B; El-Latif YMA
    Sci Rep; 2024 Oct; 14(1):23277. PubMed ID: 39375427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Prognostic Risk Model for Cervical Cancer Based on Immune Checkpoint HLA-G-Driven Differentially Expressed Genes.
    Xu HH; Wang HL; Xing TJ; Wang XQ
    Front Immunol; 2022; 13():851622. PubMed ID: 35924232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning developed a fibroblast-related signature for predicting clinical outcome and drug sensitivity in ovarian cancer.
    Fu W; Feng Q; Tao R
    Medicine (Baltimore); 2024 Apr; 103(16):e37783. PubMed ID: 38640321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.