These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genome editing using CRISPR, CAST, and Fanzor systems. Song B; Bae S Mol Cells; 2024 Jul; 47(7):100086. PubMed ID: 38909984 [TBL] [Abstract][Full Text] [Related]
3. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Lau CH; Liang QL; Zhu H Transgenic Res; 2024 Oct; 33(5):323-357. PubMed ID: 39158822 [TBL] [Abstract][Full Text] [Related]
4. CRISPR applications in microbial World: Assessing the opportunities and challenges. Kursheed F; Naz E; Mateen S; Kulsoom U Gene; 2025 Jan; 935():149075. PubMed ID: 39489225 [TBL] [Abstract][Full Text] [Related]
5. [Exploration of novel therapeutic targets in acute myeloid leukemia via genome-wide CRISPR screening]. Yamauchi T Rinsho Ketsueki; 2019; 60(7):810-817. PubMed ID: 31391371 [TBL] [Abstract][Full Text] [Related]
6. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity. Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339 [TBL] [Abstract][Full Text] [Related]
7. Genome-aware annotation of CRISPR guides validates targets in variant cell lines and enhances discovery in screens. Lam S; Thomas JC; Jackson SP Genome Med; 2024 Nov; 16(1):139. PubMed ID: 39593080 [TBL] [Abstract][Full Text] [Related]
8. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Tzelepis K; Koike-Yusa H; De Braekeleer E; Li Y; Metzakopian E; Dovey OM; Mupo A; Grinkevich V; Li M; Mazan M; Gozdecka M; Ohnishi S; Cooper J; Patel M; McKerrell T; Chen B; Domingues AF; Gallipoli P; Teichmann S; Ponstingl H; McDermott U; Saez-Rodriguez J; Huntly BJP; Iorio F; Pina C; Vassiliou GS; Yusa K Cell Rep; 2016 Oct; 17(4):1193-1205. PubMed ID: 27760321 [TBL] [Abstract][Full Text] [Related]
9. Integrating CRISPR technology with exosomes: Revolutionizing gene delivery systems. Dara M; Dianatpour M; Azarpira N; Tanideh N; Tanideh R Biochem Biophys Res Commun; 2024 Dec; 740():151002. PubMed ID: 39566123 [TBL] [Abstract][Full Text] [Related]
10. Applications of CRISPR systems in respiratory health: Entering a new 'red pen' era in genome editing. Moses C; Kaur P Respirology; 2019 Jul; 24(7):628-637. PubMed ID: 30883991 [TBL] [Abstract][Full Text] [Related]
11. Refining CRISPR-based genome and epigenome editing off-targets. Luo Y Cell Biol Toxicol; 2019 Aug; 35(4):281-283. PubMed ID: 31227932 [No Abstract] [Full Text] [Related]
12. Genome-scale clustered regularly interspaced short palindromic repeats screen identifies nucleotide metabolism as an actionable therapeutic vulnerability in diffuse large B-cell lymphoma. Davies N; Francis T; Oldreive C; Azam M; Wilson J; Byrd PJ; Burley M; Sharma-Oates A; Keane P; Alatawi S; Higgs MR; Rudzki Z; Ibrahim M; Perry T; Agathanggelou A; Hewitt AM; Smith E; Bonifer C; O'Connor M; Forment JV; Murray PG; Fennell E; Kelly G; Chang C; Stewart GS; Stankovic T; Kwok M; Taylor AM Haematologica; 2024 Dec; 109(12):3989-4006. PubMed ID: 38841800 [TBL] [Abstract][Full Text] [Related]
13. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research]. Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746 [TBL] [Abstract][Full Text] [Related]
14. Manipulating the Destiny of Wild Populations Using CRISPR. Raban R; Marshall JM; Hay BA; Akbari OS Annu Rev Genet; 2023 Nov; 57():361-390. PubMed ID: 37722684 [TBL] [Abstract][Full Text] [Related]
15. CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool forĀ Genome Editing in Plants. Liu H; Ding Y; Zhou Y; Jin W; Xie K; Chen LL Mol Plant; 2017 Mar; 10(3):530-532. PubMed ID: 28089950 [No Abstract] [Full Text] [Related]
16. Advances in therapeutic application of CRISPR-Cas9. Sun J; Wang J; Zheng D; Hu X Brief Funct Genomics; 2020 May; 19(3):164-174. PubMed ID: 31769791 [TBL] [Abstract][Full Text] [Related]
17. [Advances in base editing systems]. Zhong J; Lin J; Zhou J; Qiao Y Sheng Wu Gong Cheng Xue Bao; 2024 May; 40(5):1271-1292. PubMed ID: 38783797 [TBL] [Abstract][Full Text] [Related]
18. CRISPR: New promising biotechnological tool in wastewater treatment. Mamatha Bhanu LS; Kataki S; Chatterjee S J Microbiol Methods; 2024 Dec; 227():107066. PubMed ID: 39491556 [TBL] [Abstract][Full Text] [Related]
19. Meeting Report: German Genetics Society-Genome Editing with CRISPR. Maier LK; Marchfelder A; Randau L Bioessays; 2020 Feb; 42(2):e1900223. PubMed ID: 31853989 [No Abstract] [Full Text] [Related]
20. Systems Analysis of Highly Multiplexed CRISPR-Base Editing in Streptomycetes. Whitford CM; Gren T; Palazzotto E; Lee SY; Tong Y; Weber T ACS Synth Biol; 2023 Aug; 12(8):2353-2366. PubMed ID: 37402223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]