These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38069739)

  • 1. Recent Advancements in Development and Application of an Iron-based Shape Memory Alloy at Empa.
    Shahverdi M; Raza S; Ghafoori E; Czaderski C; Michels J; Motavalli M
    Chimia (Aarau); 2022 Mar; 76(3):242-248. PubMed ID: 38069739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermomechanical Fatigue Testing on Fe-Mn-Si Shape Memory Alloys in Prestress Conditions.
    Marinopoulou E; Katakalos K
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RC Structures Strengthened by an Iron-Based Shape Memory Alloy Embedded in a Shotcrete Layer-Nonlinear Finite Element Modeling.
    Dolatabadi N; Shahverdi M; Ghassemieh M; Motavalli M
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achievements and Perspectives on Fe-Based Shape Memory Alloys for Rehabilitation of Reinforced Concrete Bridges: An Overview.
    Qiang X; Chen L; Jiang X
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superelastic Nickel-Titanium (NiTi)-Based Smart Alloys for Enhancing the Performance of Concrete Structures.
    Alshannag MJ; Alqarni AS; Higazey MM
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application of Ni-Ti SMA Wires in the External Prestressing of Concrete Hollow Cylinders.
    Dębska A; Gwoździewicz P; Seruga A; Balandraud X; Destrebecq JF
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-Based Shape Memory Alloys in Construction: Research, Applications and Opportunities.
    Zhang ZX; Zhang J; Wu H; Ji Y; Kumar DD
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Prestressing Methods with CFRP and SMA Materials in Flexurally Strengthened RC Members.
    Rogowski J; Kotynia R
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strengthening of Reinforced Concrete Beams with Externally Mounted Sequentially Activated Iron-Based Shape Memory Alloys.
    Strieder E; Aigner C; Petautschnig G; Horn S; Marcon M; Schwenn M; Zeman O; Castillo P; Wan-Wendner R; Bergmeister K
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion Resistance of Shape Recoverable Fe-17Mn-5Si-5Cr Alloy in Concrete Structures.
    Joo J; Kang M; Shin D; Seo E; Kim D; Yeon Y; Hong K; Lee W; Lee J
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of Fe-Mn-Al-Ni Shape Memory Alloys for Internal Prestressing of Ultra-High Performance Concrete.
    Schleiting M; Wetzel A; Bauer A; Frenck JM; Niendorf T; Middendorf B
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Memory and Mechanical Properties of Cold Rolled and Annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C Alloy.
    Kim D; Hong K; Sim J; Lee J; Lee W
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review.
    Mohammadgholipour A; Billah AM
    J Intell Mater Syst Struct; 2023 Dec; 34(20):2335-2359. PubMed ID: 37970098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lightweight shape-memory magnesium alloy.
    Ogawa Y; Ando D; Sutou Y; Koike J
    Science; 2016 Jul; 353(6297):368-70. PubMed ID: 27463668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Neural Network Modeling of Shape Memory Alloys.
    Hmede R; Chapelle F; Lapusta Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications.
    Exarchos DA; Dalla PT; Tragazikis IK; Dassios KG; Zafeiropoulos NE; Karabela MM; De Crescenzo C; Karatza D; Musmarra D; Chianese S; Matikas TE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Longitudinal Compression Capacity of Hollow Concrete Cylinders Prestressed by Means of an SMA Wire.
    Dębska A; Gwoździewicz P; Seruga A; Balandraud X; Destrebecq JF
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear Performance of RC Beams Reinforced with Fe-Based Shape Memory Alloy Stirrups.
    Ji SW; Yeon YM; Hong KN
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0.
    Srivastava R; Alsamhi SH; Murray N; Devine D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal and External Reinforcement of Concrete Members by Use of Shape Memory Alloy and Fiber Reinforced Polymers under Cyclic Loading-A Review.
    Parvin A; Raad J
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.