These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38069778)

  • 1. Block Copolymer Giant Unilamellar Vesicles for High-Throughput Screening.
    Heuberger L; Palivan C
    Chimia (Aarau); 2022 Apr; 76(4):350-353. PubMed ID: 38069778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
    Arriaga LR; Datta SS; Kim SH; Amstad E; Kodger TE; Monroy F; Weitz DA
    Small; 2014 Mar; 10(5):950-6. PubMed ID: 24150883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems.
    Haller B; Göpfrich K; Schröter M; Janiesch JW; Platzman I; Spatz JP
    Lab Chip; 2018 Aug; 18(17):2665-2674. PubMed ID: 30070293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to mechanically perturb and characterize GUV-based minimal cell models.
    Wubshet NH; Liu AP
    Comput Struct Biotechnol J; 2023; 21():550-562. PubMed ID: 36659916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane Engineering: Phase Separation in Polymeric Giant Vesicles.
    Rideau E; Wurm FR; Landfester K
    Small; 2020 Jul; 16(27):e1905230. PubMed ID: 32468728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.
    Woo Y; Heo Y; Shin K; Yi GR
    J Biomed Nanotechnol; 2013 Apr; 9(4):610-4. PubMed ID: 23621019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping and release of giant unilamellar vesicles in microfluidic wells.
    Yamada A; Lee S; Bassereau P; Baroud CN
    Soft Matter; 2014 Aug; 10(32):5878-85. PubMed ID: 24930637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles.
    van Buren L; Koenderink GH; Martinez-Torres C
    ACS Synth Biol; 2023 Jan; 12(1):120-135. PubMed ID: 36508359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition.
    Maktabi S; Schertzer JW; Chiarot PR
    Soft Matter; 2019 May; 15(19):3938-3948. PubMed ID: 31011738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations.
    Stein H; Spindler S; Bonakdar N; Wang C; Sandoghdar V
    Front Physiol; 2017; 8():63. PubMed ID: 28243205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.