These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38070092)

  • 1. Neural Endophenotype Assessment in Zebrafish Larvae Using Optomotor and ZebraBox Locomotion Assessment.
    Xie J; Goodbourn P; Sztal T; Jusuf PR
    Methods Mol Biol; 2024; 2746():213-224. PubMed ID: 38070092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep-dive into fictive locomotion - a strategy to probe cellular activity during speed transitions in fictively swimming zebrafish larvae.
    Koning HK; Ahemaiti A; Boije H
    Biol Open; 2022 Mar; 11(3):. PubMed ID: 35188534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light-Dark Transitions.
    Kist AM; Portugues R
    Cell Rep; 2019 Oct; 29(3):659-670.e3. PubMed ID: 31618634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral genetic approaches to visual system development and function in zebrafish.
    Neuhauss SC
    J Neurobiol; 2003 Jan; 54(1):148-60. PubMed ID: 12486702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.
    Trivedi CA; Bollmann JH
    Front Neural Circuits; 2013; 7():86. PubMed ID: 23675322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action sequencing in the spontaneous swimming behavior of zebrafish larvae - implications for drug development.
    Palmér T; Ek F; Enqvist O; Olsson R; Åström K; Petersson P
    Sci Rep; 2017 Jun; 7(1):3191. PubMed ID: 28600565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish.
    Sztal TE; Ruparelia AA; Williams C; Bryson-Richardson RJ
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27842370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Panx1b Modulates the Luminance Response and Direction of Locomotion in the Zebrafish.
    Safarian N; Houshangi-Tabrizi S; Zoidl C; Zoidl GR
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correspondence Between Behavioral, Physiological, and Anatomical Measurements of Visual Function in Inhibitory Neuron-Ablated Zebrafish.
    Xie J; Goodbourn PT; Bui BV; Sztal TE; Jusuf PR
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4681-4690. PubMed ID: 31725167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae.
    Zhang X; Hong Q; Yang L; Zhang M; Guo X; Chi X; Tong M
    Ecotoxicol Environ Saf; 2015 Aug; 118():133-138. PubMed ID: 25938693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal Basis of Direction Control during Locomotion in Larval Zebrafish.
    Jay M; MacIver MA; McLean DL
    J Neurosci; 2023 May; 43(22):4062-4074. PubMed ID: 37127363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic dissection of a behavioural module in the vertebrate spinal cord.
    Wyart C; Del Bene F; Warp E; Scott EK; Trauner D; Baier H; Isacoff EY
    Nature; 2009 Sep; 461(7262):407-10. PubMed ID: 19759620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva.
    Granato M; van Eeden FJ; Schach U; Trowe T; Brand M; Furutani-Seiki M; Haffter P; Hammerschmidt M; Heisenberg CP; Jiang YJ; Kane DA; Kelsh RN; Mullins MC; Odenthal J; Nüsslein-Volhard C
    Development; 1996 Dec; 123():399-413. PubMed ID: 9007258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A behavioral and modeling study of control algorithms underlying the translational optomotor response in larval zebrafish with implications for neural circuit function.
    Holman JG; Lai WWK; Pichler P; Saska D; Lagnado L; Buckley CL
    PLoS Comput Biol; 2023 Feb; 19(2):e1010924. PubMed ID: 36821587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD).
    Cadena PG; Cadena MRS; Sarmah S; Marrs JA
    Reprod Toxicol; 2020 Sep; 96():249-257. PubMed ID: 32763456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva.
    Quan FB; Desban L; Mirat O; Kermarquer M; Roussel J; Koëth F; Marnas H; Djenoune L; Lejeune FX; Tostivint H; Wyart C
    Sci Rep; 2020 Sep; 10(1):15235. PubMed ID: 32943676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural control and modulation of swimming speed in the larval zebrafish.
    Severi KE; Portugues R; Marques JC; O'Malley DM; Orger MB; Engert F
    Neuron; 2014 Aug; 83(3):692-707. PubMed ID: 25066084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early asymmetries in the behaviour of zebrafish larvae.
    Watkins J; Miklósi A; Andrew RJ
    Behav Brain Res; 2004 May; 151(1-2):177-83. PubMed ID: 15084433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.
    Portugues R; Haesemeyer M; Blum ML; Engert F
    J Exp Biol; 2015 May; 218(Pt 9):1433-43. PubMed ID: 25792753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromodulatory Selection of Motor Neuron Recruitment Patterns in a Visuomotor Behavior Increases Speed.
    Jha U; Thirumalai V
    Curr Biol; 2020 Mar; 30(5):788-801.e3. PubMed ID: 32084402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.