These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38070111)

  • 1. Kinetic Detection of Apoptosis Events Via Caspase 3/7 Activation in a Tumor-Immune Microenvironment on a Chip.
    Bertani FR; Moghaddam FD; Panella C; Giannitelli SM; Peluzzi V; Gerardino A; Rainer A; Roscilli G; De Ninno A; Businaro L
    Methods Mol Biol; 2024; 2748():109-118. PubMed ID: 38070111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture.
    Aydin HB; Moon HR; Han B; Ozcelikkale A; Acar A
    Methods Mol Biol; 2024; 2764():265-278. PubMed ID: 38393600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic systems for modeling digestive cancer: a review of recent progress.
    Razavi Z; Soltani M; Pazoki-Toroudi H; Dabagh M
    Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39142294
    [No Abstract]   [Full Text] [Related]  

  • 4. Engineering Microphysiological Immune System Responses on Chips.
    Miller CP; Shin W; Ahn EH; Kim HJ; Kim DH
    Trends Biotechnol; 2020 Aug; 38(8):857-872. PubMed ID: 32673588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in 3D Vascularized Tumor-on-a-Chip Technology.
    Jung S; Jo H; Hyung S; Jeon NL
    Adv Exp Med Biol; 2022; 1379():231-256. PubMed ID: 35760994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types.
    van de Crommert B; Palacio-CastaƱeda V; Verdurmen WPR
    Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-on-chip modeling of organ-specific cancer and metastasis.
    Del Piccolo N; Shirure VS; Bi Y; Goedegebuure SP; Gholami S; Hughes CCW; Fields RC; George SC
    Adv Drug Deliv Rev; 2021 Aug; 175():113798. PubMed ID: 34015419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment.
    Kumar V; Varghese S
    Adv Healthc Mater; 2019 Feb; 8(4):e1801198. PubMed ID: 30516355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip.
    Feiner-Gracia N; Glinkowska Mares A; Buzhor M; Rodriguez-Trujillo R; Samitier Marti J; Amir RJ; Pujals S; Albertazzi L
    ACS Appl Bio Mater; 2021 Jan; 4(1):669-681. PubMed ID: 33490884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip recapitulation of the tumor microenvironment: A decade of progress.
    Giannitelli SM; Peluzzi V; Raniolo S; Roscilli G; Trombetta M; Mozetic P; Rainer A
    Biomaterials; 2024 Apr; 306():122482. PubMed ID: 38301325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications.
    Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F
    Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic systems to study tissue barriers to immunotherapy.
    Ramirez A; Amosu M; Lee P; Maisel K
    Drug Deliv Transl Res; 2021 Dec; 11(6):2414-2429. PubMed ID: 34215998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
    Zhang J; Tavakoli H; Ma L; Li X; Han L; Li X
    Adv Drug Deliv Rev; 2022 Aug; 187():114365. PubMed ID: 35667465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor-lymph node interaction.
    Shim S; Belanger MC; Harris AR; Munson JM; Pompano RR
    Lab Chip; 2019 Mar; 19(6):1013-1026. PubMed ID: 30742147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ-on-a-chip: future of female reproductive pathophysiological models.
    Deng ZM; Dai FF; Wang RQ; Deng HB; Yin TL; Cheng YX; Chen GT
    J Nanobiotechnology; 2024 Jul; 22(1):455. PubMed ID: 39085921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices.
    Kundu B; Caballero D; Abreu CM; Reis RL; Kundu SC
    Adv Exp Med Biol; 2022; 1379():115-138. PubMed ID: 35760990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior.
    de Roode KE; Hashemi K; Verdurmen WPR; Brock R
    Small; 2024 Aug; 20(35):e2402311. PubMed ID: 38700060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches.
    Sleeboom JJF; Eslami Amirabadi H; Nair P; Sahlgren CM; den Toonder JMJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29555848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.