These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38070296)
41. Tissue Engineering of Canine Cartilage from Surgically Debrided Osteochondritis Dissecans Fragments. Vapniarsky N; Moncada L; Garrity C; Wong A; Filliquist B; Chou PY; Kapatkin AS; Marcellin-Little DJ Ann Biomed Eng; 2022 Jan; 50(1):56-77. PubMed ID: 34961892 [TBL] [Abstract][Full Text] [Related]
42. Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing. Burdis R; Chariyev-Prinz F; Browe DC; Freeman FE; Nulty J; McDonnell EE; Eichholz KF; Wang B; Brama P; Kelly DJ Biomaterials; 2022 Oct; 289():121750. PubMed ID: 36084483 [TBL] [Abstract][Full Text] [Related]
43. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Daly AC; Kelly DJ Biomaterials; 2019 Mar; 197():194-206. PubMed ID: 30660995 [TBL] [Abstract][Full Text] [Related]
44. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
45. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830 [TBL] [Abstract][Full Text] [Related]
46. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. Emans PJ; Jansen EJ; van Iersel D; Welting TJ; Woodfield TB; Bulstra SK; Riesle J; van Rhijn LW; Kuijer R J Tissue Eng Regen Med; 2013 Sep; 7(9):751-6. PubMed ID: 22438217 [TBL] [Abstract][Full Text] [Related]
48. Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Theodoropoulos JS; DeCroos AJ; Petrera M; Park S; Kandel RA Knee Surg Sports Traumatol Arthrosc; 2016 Jun; 24(6):2055-64. PubMed ID: 25173505 [TBL] [Abstract][Full Text] [Related]
49. In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Kitahara S; Nakagawa K; Sah RL; Wada Y; Ogawa T; Moriya H; Masuda K Tissue Eng Part A; 2008 Nov; 14(11):1905-13. PubMed ID: 18620479 [TBL] [Abstract][Full Text] [Related]
50. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage. Seifzadeh A; Oguamanam DC; Papini M Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740 [TBL] [Abstract][Full Text] [Related]
52. A novel MSC-seeded triphasic construct for the repair of osteochondral defects. Marquass B; Somerson JS; Hepp P; Aigner T; Schwan S; Bader A; Josten C; Zscharnack M; Schulz RM J Orthop Res; 2010 Dec; 28(12):1586-99. PubMed ID: 20973061 [TBL] [Abstract][Full Text] [Related]
53. Nims RJ; Cigan AD; Durney KM; Jones BK; O'Neill JD; Law WA; Vunjak-Novakovic G; Hung CT; Ateshian GA Tissue Eng Part A; 2017 Aug; 23(15-16):847-858. PubMed ID: 28193145 [TBL] [Abstract][Full Text] [Related]
54. Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. Wendt D; Jakob M; Martin I J Biosci Bioeng; 2005 Nov; 100(5):489-94. PubMed ID: 16384786 [TBL] [Abstract][Full Text] [Related]
55. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study. Jayabalan P; Tan AR; Rahaman MN; Bal BS; Hung CT; Cook JL Clin Orthop Relat Res; 2011 Oct; 469(10):2754-63. PubMed ID: 21365338 [TBL] [Abstract][Full Text] [Related]
56. Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Theodoropoulos JS; De Croos JN; Park SS; Pilliar R; Kandel RA Clin Orthop Relat Res; 2011 Oct; 469(10):2785-95. PubMed ID: 21403985 [TBL] [Abstract][Full Text] [Related]
57. Chondrocyte colonisation of a tissue-engineered cartilage substitute under a mechanical stimulus. Nachtsheim J; Dursun G; Markert B; Stoffel M Med Eng Phys; 2019 Dec; 74():58-64. PubMed ID: 31611181 [TBL] [Abstract][Full Text] [Related]
58. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Wei X; Liu B; Liu G; Yang F; Cao F; Dou X; Yu W; Wang B; Zheng G; Cheng L; Ma Z; Zhang Y; Yang J; Wang Z; Li J; Cui D; Wang W; Xie H; Li L; Zhang F; Lineaweaver WC; Zhao D Stem Cell Res Ther; 2019 Mar; 10(1):72. PubMed ID: 30837004 [TBL] [Abstract][Full Text] [Related]
59. Matrix generation within a macroporous non-degradable implant for osteochondral defects is not enhanced with partial enzymatic digestion of the surrounding tissue: evaluation in an in vivo rabbit model. Krych AJ; Wanivenhaus F; Ng KW; Doty S; Warren RF; Maher SA J Mater Sci Mater Med; 2013 Oct; 24(10):2429-37. PubMed ID: 23846837 [TBL] [Abstract][Full Text] [Related]