These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38070310)

  • 1. Construction of a fused grid-based CYP2C18-Template system and its application to drug metabolism.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2024 Feb; 54():100534. PubMed ID: 38070310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a fused grid-based CYP2C8-Template system and the application.
    Yamazoe Y; Yamamura Y; Yoshinari K
    Drug Metab Pharmacokinet; 2024 Apr; 55():100492. PubMed ID: 38609777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a fused grid-based CYP2C19-Template system and the application.
    Yamamura Y; Yoshinari K; Yamazoe Y
    Drug Metab Pharmacokinet; 2023 Feb; 48():100481. PubMed ID: 36813636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a fused grid-based template system of CYP2C9 and its application.
    Yamazoe Y; Yamamura Y; Yoshinari K
    Drug Metab Pharmacokinet; 2022 Aug; 45():100451. PubMed ID: 35797783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of fused-grid-based CYP-Template systems for genotoxic substances to understand the metabolisms.
    Yamazoe Y; Murayama N; Kawamura T; Yamada T
    Genes Environ; 2023 Aug; 45(1):22. PubMed ID: 37544994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined CYP2E1
    Yamazoe Y; Murayama N; Yoshinari K
    Drug Metab Pharmacokinet; 2021 Dec; 41():100413. PubMed ID: 34673327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CYP1A2-Template System to Understand Metabolic Processes in the Safety Assessment.
    Murayama N; Yamada T; Yamazoe Y
    Food Saf (Tokyo); 2022 Dec; 10(4):129-139. PubMed ID: 36619007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation.
    Chang TK; Yu L; Goldstein JA; Waxman DJ
    Pharmacogenetics; 1997 Jun; 7(3):211-21. PubMed ID: 9241661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 2: Solving substrate interactions of CYP1A2 with non-PAH substrates on the template system.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2017 Oct; 32(5):229-247. PubMed ID: 28801182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes.
    Karam WG; Goldstein JA; Lasker JM; Ghanayem BI
    Drug Metab Dispos; 1996 Oct; 24(10):1081-7. PubMed ID: 8894508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition.
    Yamazoe Y; Goto T; Tohkin M
    Drug Metab Pharmacokinet; 2019 Apr; 34(2):113-125. PubMed ID: 30639283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of regioselectivity and preferred order of CYP1A1-mediated metabolism: Solving the interaction of human and rat CYP1A1 forms with ligands on the template system.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2020 Feb; 35(1):165-185. PubMed ID: 31974042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 1. Focusing on polycyclic arenes and the related chemicals.
    Yamazoe Y; Ito K; Yamamura Y; Iwama R; Yoshinari K
    Drug Metab Pharmacokinet; 2016 Oct; 31(5):363-384. PubMed ID: 27665699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression and function of CYP2C isoforms in human intestine and liver.
    Läpple F; von Richter O; Fromm MF; Richter T; Thon KP; Wisser H; Griese EU; Eichelbaum M; Kivistö KT
    Pharmacogenetics; 2003 Sep; 13(9):565-75. PubMed ID: 12972955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of cytochrome P450 2C subfamily members in terms of drug oxidation rates and substrate inhibition.
    Niwa T; Yamazaki H
    Curr Drug Metab; 2012 Oct; 13(8):1145-59. PubMed ID: 22571484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving the interactions of steroidal ligands with CYP3A4 using a grid-base template system.
    Goto T; Tohkin M; Yamazoe Y
    Drug Metab Pharmacokinet; 2019 Dec; 34(6):351-364. PubMed ID: 31563329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions part 3: Difference in substrate specificity of human and rodent CYP1A2 and the refinement of predicting system.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2019 Aug; 34(4):217-232. PubMed ID: 31133515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism and interaction of bisphenol A in human hepatic cytochrome P450 and steroidogenic CYP17.
    Niwa T; Fujimoto M; Kishimoto K; Yabusaki Y; Ishibashi F; Katagiri M
    Biol Pharm Bull; 2001 Sep; 24(9):1064-7. PubMed ID: 11558570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of a grid-based CYP3A4 Template system to understand the interacting mechanisms of large-size ligands; part 4 of CYP3A4 Template study.
    Goto T; Yamazoe Y; Tohkin M
    Drug Metab Pharmacokinet; 2020 Dec; 35(6):485-496. PubMed ID: 32967779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase chain reaction-directed identification, cloning, and quantification of human CYP2C18 mRNA.
    Furuya H; Meyer UA; Gelboin HV; Gonzalez FJ
    Mol Pharmacol; 1991 Sep; 40(3):375-82. PubMed ID: 1896026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.