These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38070452)

  • 1. The influence of microstructural characteristics and cell wall material properties on the mechanical behaviors of different tissues of sorghum stems.
    Zargar O; Yuan Z; Li Q; Finlayson S; Pharr M; Muliana A
    J Mech Behav Biomed Mater; 2024 Feb; 150():106267. PubMed ID: 38070452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of water content on the longitudinal modulus of elasticity of maize stalk pith and rind tissues.
    Sutherland B; Steele K; Carter J; Cook DD
    Plant Methods; 2023 Jun; 19(1):64. PubMed ID: 37391797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent mechanical behavior of sweet sorghum stems.
    Lee S; Zargar O; Reiser C; Li Q; Muliana A; Finlayson SA; Gomez FE; Pharr M
    J Mech Behav Biomed Mater; 2020 Jun; 106():103731. PubMed ID: 32250945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating Turgor-Induced Stress Patterns in Multilayered Plant Tissues.
    Ali O; Oliveri H; Traas J; Godin C
    Bull Math Biol; 2019 Aug; 81(8):3362-3384. PubMed ID: 31187342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model.
    Oliveri H; Traas J; Godin C; Ali O
    J Math Biol; 2019 Feb; 78(3):625-653. PubMed ID: 30209574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol for mapping the variability in cell wall mechanical bending behavior in living leaf pavement cells.
    Li W; Keynia S; Belteton SA; Afshar-Hatam F; Szymanski DB; Turner JA
    Plant Physiol; 2022 Mar; 188(3):1435-1449. PubMed ID: 34908122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the transverse Young's modulus of maize rind and pith tissues.
    Stubbs CJ; Sun W; Cook DD
    J Biomech; 2019 Feb; 84():113-120. PubMed ID: 30635117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graviresponses in herb and trees: a major role for the redistribution of tissue and growth stresses.
    Hejnowicz Z
    Planta; 1997 Sep; 203(Suppl 1):S136-46. PubMed ID: 11540322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the compressive modulus of elasticity of pith-filled plant stems.
    Al-Zube LA; Robertson DJ; Edwards JN; Sun W; Cook DD
    Plant Methods; 2017; 13():99. PubMed ID: 29151845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural mechanical study of a transverse osteon under compressive loading: The role of fiber reinforcement and explanation of some geometrical and mechanical microscopic properties.
    De Micheli PO; Witzel U
    J Biomech; 2011 May; 44(8):1588-92. PubMed ID: 21397233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thigmostimulation alters anatomical and biomechanical properties of bioenergy sorghum stems.
    Zargar O; Li Q; Nwaobi C; Pharr M; Finlayson SA; Muliana A
    J Mech Behav Biomed Mater; 2022 Mar; 127():105090. PubMed ID: 35114492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Cell Geometry and Cellular Patterning Influence Tissue Stiffness.
    Majda M; Trozzi N; Mosca G; Smith RS
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospecting for Energy-Rich Renewable Raw Materials: Sorghum Stem Case Study.
    Byrt CS; Betts NS; Tan HT; Lim WL; Ermawar RA; Nguyen HY; Shirley NJ; Lahnstein J; Corbin K; Fincher GB; Knauf V; Burton RA
    PLoS One; 2016; 11(5):e0156638. PubMed ID: 27232754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission.
    Hejnowicz Z; Borowska-Wykret D
    Planta; 2005 Jan; 220(3):465-73. PubMed ID: 15365835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Macro/Microstructures and Constituents of Sorghum and Reed Straw.
    Song J; Li G; Liu Y; Zou M
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant material features responsible for bamboo's excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels.
    Wang X; Keplinger T; Gierlinger N; Burgert I
    Ann Bot; 2014 Dec; 114(8):1627-35. PubMed ID: 25180290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides.
    Siqueira G; Milagres AM; Carvalho W; Koch G; Ferraz A
    Biotechnol Biofuels; 2011 Mar; 4():7. PubMed ID: 21410971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical analysis of the strains generated by water tension in plant stems. Part I: stress transmission from the water to the cell walls.
    Alméras T; Gril J
    Tree Physiol; 2007 Nov; 27(11):1505-16. PubMed ID: 17669740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon-induced changes in viscoelastic properties of sorghum root cell walls.
    Hattori T; Inanaga S; Tanimoto E; Lux A; Luxová M; Sugimoto Y
    Plant Cell Physiol; 2003 Jul; 44(7):743-9. PubMed ID: 12881502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.