These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 38070660)
1. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. AboulFotouh K; Southard B; Dao HM; Xu H; Moon C; Williams Iii RO; Cui Z Int J Pharm; 2024 Jan; 650():123688. PubMed ID: 38070660 [TBL] [Abstract][Full Text] [Related]
3. Thin-film freeze-drying of an influenza virus hemagglutinin mRNA vaccine in unilamellar lipid nanoparticles with blebs. Li Q; Shi R; Xu H; AboulFotouh K; Sung MMH; Oguin TH; Hayes M; Moon C; Dao HM; Ni H; Sahakijpijarn S; Cano C; Davenport GJ; Williams RO; Le Huray J; Cui Z; Weissman D J Control Release; 2024 Nov; 375():829-838. PubMed ID: 39293526 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the effects of storage conditions on spray-dried siRNA-LNPs before and after subsequent drying. Zimmermann CM; Deßloch L; Jürgens DC; Luciani P; Merkel OM Eur J Pharm Biopharm; 2023 Dec; 193():218-226. PubMed ID: 37956785 [TBL] [Abstract][Full Text] [Related]
5. Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. Ogawa K; Aikawa O; Tagami T; Ito T; Tahara K; Kawakami S; Ozeki T Int J Pharm; 2024 Nov; 665():124632. PubMed ID: 39182740 [TBL] [Abstract][Full Text] [Related]
6. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Reinhart AG; Osterwald A; Ringler P; Leiser Y; Lauer ME; Martin RE; Ullmer C; Schumacher F; Korn C; Keller M Mol Pharm; 2023 Dec; 20(12):6492-6503. PubMed ID: 37975733 [TBL] [Abstract][Full Text] [Related]
7. Chemistry of Lipid Nanoparticles for RNA Delivery. Eygeris Y; Gupta M; Kim J; Sahay G Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635 [TBL] [Abstract][Full Text] [Related]
8. Continuous freeze-drying of messenger RNA lipid nanoparticles enables storage at higher temperatures. Meulewaeter S; Nuytten G; Cheng MHY; De Smedt SC; Cullis PR; De Beer T; Lentacker I; Verbeke R J Control Release; 2023 May; 357():149-160. PubMed ID: 36958400 [TBL] [Abstract][Full Text] [Related]
9. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways. Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs. Alejo T; Toro-Córdova A; Fernández L; Rivero A; Stoian AM; Pérez L; Navarro V; Martínez-Oliván J; de Miguel D Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39408932 [TBL] [Abstract][Full Text] [Related]
11. Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids. Lamoot A; Lammens J; De Lombaerde E; Zhong Z; Gontsarik M; Chen Y; De Beer TRM; De Geest BG Biomater Sci; 2023 Jun; 11(12):4327-4334. PubMed ID: 37073472 [TBL] [Abstract][Full Text] [Related]
12. Design and lyophilization of mRNA-encapsulating lipid nanoparticles. Wang T; Yu T; Li W; Liu Q; Sung TC; Higuchi A Int J Pharm; 2024 Sep; 662():124514. PubMed ID: 39067550 [TBL] [Abstract][Full Text] [Related]
13. Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles. Athaydes Seabra Ferreira H; Ricardo Aluotto Scalzo Júnior S; Kelton Santos de Faria K; Henrique Costa Silva G; Túllio Rodrigues Alves M; Oliveira Lobo A; Pires Goulart Guimarães P Int J Pharm; 2024 Nov; 665():124696. PubMed ID: 39265853 [TBL] [Abstract][Full Text] [Related]
14. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Wang JL; Hanafy MS; Xu H; Leal J; Zhai Y; Ghosh D; Williams Iii RO; David Charles Smyth H; Cui Z Int J Pharm; 2021 Mar; 596():120215. PubMed ID: 33486021 [TBL] [Abstract][Full Text] [Related]
15. Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA. Miao H; Huang K; Li Y; Li R; Zhou X; Shi J; Tong Z; Sun Z; Yu A Int J Pharm; 2023 Jun; 640():123050. PubMed ID: 37201764 [TBL] [Abstract][Full Text] [Related]
16. Development of an Alcohol Dilution-Lyophilization Method for the Preparation of mRNA-LNPs with Improved Storage Stability. Shirane D; Tanaka H; Sakurai Y; Taneichi S; Nakai Y; Tange K; Ishii I; Akita H Pharmaceutics; 2023 Jun; 15(7):. PubMed ID: 37514007 [TBL] [Abstract][Full Text] [Related]
18. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying. Hufnagel S; Xu H; Sahakijpijarn S; Moon C; Chow LQM; Williams Iii RO; Cui Z Int J Pharm; 2022 Apr; 618():121637. PubMed ID: 35259440 [TBL] [Abstract][Full Text] [Related]
19. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery. Sarode A; Patel P; Vargas-Montoya N; Allawzi A; Zhilin-Roth A; Karmakar S; Boeglin L; Deng H; Karve S; DeRosa F Drug Deliv Transl Res; 2024 Feb; 14(2):360-372. PubMed ID: 37526881 [TBL] [Abstract][Full Text] [Related]
20. Next-generation materials for RNA-lipid nanoparticles: lyophilization and targeted transfection. Wang T; Sung TC; Yu T; Lin HY; Chen YH; Zhu ZW; Gong J; Pan J; Higuchi A J Mater Chem B; 2023 Jun; 11(23):5083-5093. PubMed ID: 37221913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]