BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38070773)

  • 1. Vial Wall Effect on Freeze-Drying Speed.
    Ramšak M; Hriberšek M
    J Pharm Sci; 2024 May; 113(5):1275-1284. PubMed ID: 38070773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Aspects of Measuring the Vial Heat Transfer Coefficient in Pharmaceutical Freeze-Drying.
    Wegiel LA; Ferris SJ; Nail SL
    AAPS PharmSciTech; 2018 May; 19(4):1810-1817. PubMed ID: 29616490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molded Vial Manufacturing and Its Impact on Heat Transfer during Freeze-Drying: Vial Geometry Considerations.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Jan; 22(2):57. PubMed ID: 33502633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat transfer in vial lyophilization.
    Brülls M; Rasmuson A
    Int J Pharm; 2002 Oct; 246(1-2):1-16. PubMed ID: 12270604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, K
    Pikal MJ; Bogner R; Mudhivarthi V; Sharma P; Sane P
    J Pharm Sci; 2016 Nov; 105(11):3333-3343. PubMed ID: 27666376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of chamber wall temperature on energy transfer during freeze-drying.
    Ehlers S; Friess W; Schroeder R
    Int J Pharm; 2021 Jan; 592():120025. PubMed ID: 33137451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing a Multi-Vial Design Space for the Freeze-Drying Process by Means of Mathematical Modeling of the Primary Drying Stage.
    Pérez R; Alvarez MA; Acosta LL; Terry AM; Labrada A
    J Pharm Sci; 2024 Jun; 113(6):1506-1514. PubMed ID: 38342340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trouble With the Neighbor During Freeze-Drying: Rivalry About Energy.
    Ehlers S; Schroeder R; Friess W
    J Pharm Sci; 2021 Mar; 110(3):1219-1226. PubMed ID: 33069707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.
    Hibler S; Wagner C; Gieseler H
    J Pharm Sci; 2012 Mar; 101(3):1189-201. PubMed ID: 22161688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of heat transfer in vial freeze-drying of pharmaceuticals. II. A fluid cushion device.
    Yalkowsky SH; Patel SD
    Pharm Res; 1992 Jun; 9(6):753-8. PubMed ID: 1409357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of freeze-drying cycles: The determination of heat transfer coefficient by using heat flux sensor and MicroFD.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2022 Jun; 621():121763. PubMed ID: 35472509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process.
    Lietta E; Colucci D; Distefano G; Fissore D
    J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Heat Transfer During the Secondary Drying Stage of Freeze Drying: Current Practice and Knowledge Gaps.
    Yoon K; Narsimhan V
    J Pharm Sci; 2022 Feb; 111(2):368-381. PubMed ID: 34571133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.