These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38070800)
21. Functional Amyloids in Pseudomonas aeruginosa Are Essential for the Proteome Modulation That Leads to Pathoadaptation in Pulmonary Niches. Beg AZ; Rashid F; Talat A; Haseen MA; Raza N; Akhtar K; Dueholm MKD; Khan AU Microbiol Spectr; 2023 Feb; 11(1):e0307122. PubMed ID: 36475836 [TBL] [Abstract][Full Text] [Related]
22. Yadav MK; Chae SW; Go YY; Im GJ; Song JJ Front Cell Infect Microbiol; 2017; 7():125. PubMed ID: 28459043 [No Abstract] [Full Text] [Related]
23. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Tahrioui A; Duchesne R; Bouffartigues E; Rodrigues S; Maillot O; Tortuel D; Hardouin J; Taupin L; Groleau MC; Dufour A; Déziel E; Brenner-Weiss G; Feuilloley M; Orange N; Lesouhaitier O; Cornelis P; Chevalier S NPJ Biofilms Microbiomes; 2019; 5(1):15. PubMed ID: 31149345 [TBL] [Abstract][Full Text] [Related]
24. Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo. Hengzhuang W; Høiby N; Ciofu O Methods Mol Biol; 2014; 1147():239-54. PubMed ID: 24664838 [TBL] [Abstract][Full Text] [Related]
25. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. Wang H; Fan Q; Wang Y; Yi L; Wang Y BMC Microbiol; 2024 Aug; 24(1):297. PubMed ID: 39127666 [TBL] [Abstract][Full Text] [Related]
26. NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Gjersing EL; Herberg JL; Horn J; Schaldach CM; Maxwell RS Anal Chem; 2007 Nov; 79(21):8037-45. PubMed ID: 17915964 [TBL] [Abstract][Full Text] [Related]
27. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism. Vital-Lopez FG; Reifman J; Wallqvist A PLoS Comput Biol; 2015 Oct; 11(10):e1004452. PubMed ID: 26431398 [TBL] [Abstract][Full Text] [Related]
28. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Pires D; Sillankorva S; Faustino A; Azeredo J Res Microbiol; 2011 Oct; 162(8):798-806. PubMed ID: 21782936 [TBL] [Abstract][Full Text] [Related]
29. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms. Park AJ; Murphy K; Surette MD; Bandoro C; Krieger JR; Taylor P; Khursigara CM J Proteome Res; 2015 Nov; 14(11):4524-37. PubMed ID: 26378716 [TBL] [Abstract][Full Text] [Related]
30. Transcriptome Analysis of Pseudomonas aeruginosa Biofilm Infection in an Harrington NE; Littler JL; Harrison F Appl Environ Microbiol; 2022 Feb; 88(3):e0178921. PubMed ID: 34878811 [TBL] [Abstract][Full Text] [Related]
31. In vitro and in silico evaluation of the serrapeptase effect on biofilm and amyloids of Pseudomonas aeruginosa. Katsipis G; Avgoulas DI; Geromichalos GD; Petala M; Pantazaki AA Appl Microbiol Biotechnol; 2023 Dec; 107(23):7269-7285. PubMed ID: 37741938 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Benthall G; Touzel RE; Hind CK; Titball RW; Sutton JM; Thomas RJ; Wand ME Int J Antimicrob Agents; 2015 Nov; 46(5):538-45. PubMed ID: 26364845 [TBL] [Abstract][Full Text] [Related]
33. Effects of exogenous glucose on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. She P; Wang Y; Liu Y; Tan F; Chen L; Luo Z; Wu Y Microbiologyopen; 2019 Dec; 8(12):e933. PubMed ID: 31532581 [TBL] [Abstract][Full Text] [Related]
34. Application of Phenotype Microarray for Profiling Carbon Sources Utilization between Biofilm and Non-Biofilm of Pseudomonas aeruginosa from Clinical Isolates. Ismail NS; Subbiah SK; Taib NM Curr Pharm Biotechnol; 2020; 21(14):1539-1550. PubMed ID: 32598252 [TBL] [Abstract][Full Text] [Related]
35. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Wei Q; Ma LZ Int J Mol Sci; 2013 Oct; 14(10):20983-1005. PubMed ID: 24145749 [TBL] [Abstract][Full Text] [Related]
36. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow. Kasetty S; Mould DL; Hogan DA; Nadell CD mSphere; 2021 Jun; 6(3):e0041621. PubMed ID: 34160236 [TBL] [Abstract][Full Text] [Related]
37. The role of bacterial biofilms in chronic infections. Bjarnsholt T APMIS Suppl; 2013 May; (136):1-51. PubMed ID: 23635385 [TBL] [Abstract][Full Text] [Related]
38. Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. Mozaheb N; Van Der Smissen P; Opsomer T; Mignolet E; Terrasi R; Paquot A; Larondelle Y; Dehaen W; Muccioli GG; Mingeot-Leclercq MP mSphere; 2022 Jun; 7(3):e0018722. PubMed ID: 35603537 [TBL] [Abstract][Full Text] [Related]