These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38071282)

  • 1. UiO66-NH
    Abbasnia A; Rezaei Kalantary R; Farzadkia M; Yeganeh M; Esrafili A
    Sci Rep; 2023 Dec; 13(1):21829. PubMed ID: 38071282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas diffusion TiO
    Wang C; Liu Y; Chen R; Zhu X; Ye D; Yang Y; Liao Q
    J Hazard Mater; 2023 Apr; 447():130769. PubMed ID: 36640503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO
    Zha L; Bai J; Zhou C; Zhang Y; Li J; Wang P; Zhang B; Zhou B
    Chemosphere; 2022 Feb; 289():133119. PubMed ID: 34864014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of diluted palm oil mill effluent (POME) synchronous with electricity production in a persulfate oxidant-promoted photocatalytic fuel cell.
    Yap CJ; Lam SM; Sin JC; Zeng H; Li H; Huang L; Lin H
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96272-96289. PubMed ID: 37566326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greywater and bacteria removal with synchronized energy production in photocatalytic fuel cell based on anodic TiO
    Lam SM; Sin JC; Lin H; Li H; Zeng H
    Chemosphere; 2020 Apr; 245():125565. PubMed ID: 31855765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process.
    Nordin N; Ho LN; Ong SA; Ibrahim AH; Lee SL; Ong YP
    Chemosphere; 2019 Jan; 214():614-622. PubMed ID: 30292044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of photocatalytic fuel cell (PFC) for electricity production and simultaneous degradation of methyl green in synthetic and real greywater effluents.
    Kee MW; Soo JW; Lam SM; Sin JC; Mohamed AR
    J Environ Manage; 2018 Dec; 228():383-392. PubMed ID: 30243074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional nickel foam carried sea urchin-like copper-cobalt-cerium cathode for enhanced tetracycline wastewater purification in photocatalytic fuel cell.
    Xia L; Sun Y; Wang Y; Yao W; Wu Q; Min Y; Xu Q
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1444-1454. PubMed ID: 37804613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-functional photocatalytic fuel cell for simultaneous removal of organic pollutant and chromium (VI) accompanied with electricity production.
    Liu XH; Xing ZH; Chen QY; Wang YH
    Chemosphere; 2019 Dec; 237():124457. PubMed ID: 31382197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electricity generation in fuel cell with light and without light and decomposition of tetracycline hydrochloride using g-C
    Rabé K; Liu L; Nahyoon NA
    Chemosphere; 2020 Mar; 243():125425. PubMed ID: 31778916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyaniline/g-C
    Dong L; Xu Y; Zhong D; Chang H; Li J; Liu Y; Han Z
    Chemosphere; 2023 Jun; 325():138399. PubMed ID: 36925002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Fabrication of a Dual-Photoelectrode Fuel Cell towards Cost-Effective Electricity Production from Biomass.
    Zhang B; Fan W; Yao T; Liao S; Li A; Li D; Liu M; Shi J; Liao S; Li C
    ChemSusChem; 2017 Jan; 10(1):99-105. PubMed ID: 27860457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting power density of photocatalytic fuel cells with integrated supercapacitive photoanode.
    Jiang B; Bai J; Li L; He N; Zhang Q; Wang B; Tang D
    Chemosphere; 2022 Jan; 286(Pt 1):131657. PubMed ID: 34351279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower ball cathode assembled from Cu doped Co
    Wang Y; Li X; Fan Y; Wu J; Wu X; Xia L; Yao W; Wu Q; Min Y; Xu Q
    RSC Adv; 2023 May; 13(23):15640-15650. PubMed ID: 37228684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient photocatalytic oxidation of antibiotic ciprofloxacin using TiO
    Wang G; Li Y; Dai J; Deng N
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48522-48538. PubMed ID: 35190993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Hydrogen and Electricity Production Combined with Degradation of Organics Based on a Novel Solar Water-Energy Nexus System.
    Chang S; Hu C; Beyhaqi A; Wang M; Zeng Q
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2505-2515. PubMed ID: 31850726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Black TiO
    Plaça LF; Vital PS; Gomes LE; Roveda AC; Cardoso DR; Martins CA; Wender H
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43259-43271. PubMed ID: 35856741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting synthetic azo dye and real textile wastewater into clean energy by using synthesized CuO/C as photocathode in dual-photoelectrode photocatalytic fuel cell.
    Khalik WF; Ho LN; Ong SA; Lai NB; Thor SH; Yap KL
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58516-58526. PubMed ID: 36988807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Enhancement of Actual Wastewater Treatment and Electricity Generation Through Surface Modified TiO₂ Nanotube Arrays Based Photoanode Photocatalytic Fuel Cell.
    Li X; Yang F; Guo T; Zhang Y; Yu S; Zhou L; Wang Q; Wang C
    J Nanosci Nanotechnol; 2021 Oct; 21(10):5188-5195. PubMed ID: 33875105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.
    Li J; Li J; Chen Q; Bai J; Zhou B
    J Hazard Mater; 2013 Nov; 262():304-10. PubMed ID: 24051045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.