These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38071613)

  • 1. A comprehensive review of haptic feedback in minimally invasive robotic liver surgery: Advancements and challenges.
    Selim M; Dresscher D; Abayazid M
    Int J Med Robot; 2023 Dec; ():e2605. PubMed ID: 38071613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Needle Insertion with Enhanced Haptic Feedback for Guidance and Needle-Tissue Interaction Forces.
    Selim M; Dresscher D; Abayazid M
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery.
    Ehrampoosh A; Shirinzadeh B; Pinskier J; Smith J; Moshinsky R; Zhong Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-compatible and sensorless haptic feedback for cable-driven medical robotics to perform teleoperated needle-based interventions.
    Vogt I; Eisenmann M; Schlünz A; Kowal R; Düx D; Thormann M; Glandorf J; Yerdelen SS; Georgiades M; Odenbach R; Hensen B; Gutberlet M; Wacker F; Fischbach F; Rose G
    Int J Comput Assist Radiol Surg; 2024 Sep; ():. PubMed ID: 39264411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.
    Pinzon D; Byrns S; Zheng B
    Surg Innov; 2016 Aug; 23(4):415-21. PubMed ID: 26839212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.
    Shang W; Su H; Li G; Fischer GS
    Rep U S; 2013; 2013():4092-4098. PubMed ID: 25126446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Telepresence augmentation for visual and haptic guided immersive teleoperation of industrial manipulator.
    Huang F; Yang X; Yan T; Chen Z
    ISA Trans; 2024 Jul; 150():262-277. PubMed ID: 38749885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of haptic feedback in tele-operated robotic surgery.
    El Rassi I; El Rassi JM
    J Med Eng Technol; 2020 Jul; 44(5):247-254. PubMed ID: 32573288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.
    Beyl T; Nicolai P; Mönnich H; Raczkowksy J; Wörn H
    Stud Health Technol Inform; 2012; 173():58-63. PubMed ID: 22356957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.