These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38071868)

  • 1. Converting waste tires into p-cymene through hydropyrolysis and selective gas-phase hydrogenation/dehydrogenation.
    Wu J; Zhang Z; Li D; Zhang Y; Wang J; Jiang J
    Waste Manag; 2024 Feb; 174():282-289. PubMed ID: 38071868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flash hydropyrolysis of cotton stalks: Role of temperature, metal loading, pressure for enhancement of aromatics.
    Jindal M; Kumar A; Kaur R; Chandra Sekhar Palla V; Bhaskar T
    Bioresour Technol; 2022 May; 351():127047. PubMed ID: 35337994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Aromatic Hydrocarbons from Co-Hydropyrolysis of Biomass Components and HDPE with Application of Modified HZSM-5 Catalyst.
    Ren L; Xu Y; Chen W; Zhang C
    Chem Biodivers; 2024 Jun; 21(6):e202400150. PubMed ID: 38548660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst.
    Remón J; Sevilla-Gasca R; Frecha E; Pinilla JL; Suelves I
    Sci Total Environ; 2022 Jun; 825():154044. PubMed ID: 35202688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric study of two-stage hydropyrolysis of lignocellulosic biomass for production of gaseous and light aromatic hydrocarbons.
    Zheng N; Zhang J; Wang J
    Bioresour Technol; 2017 Nov; 244(Pt 1):142-150. PubMed ID: 28779665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of CaO on the thermal kinetics and formation mechanism of high value-added products during waste tire pyrolysis.
    Chen Q; Xu F; Zong P; Song F; Wang B; Tian Y; Wu F; Zhao X; Qiao Y
    J Hazard Mater; 2022 Aug; 436():129220. PubMed ID: 35739742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric effect of biomass partial hydropyrolysis process in a downer reactor to co-produce high-quality tar and syngas.
    Tian Y; Li J; Wei W; Zong P; Zhang D; Zhu Y; Qiao Y
    Bioresour Technol; 2021 Jan; 320(Pt B):124401. PubMed ID: 33220543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.
    Williams PT; Brindle AJ
    Waste Manag Res; 2002 Dec; 20(6):546-55. PubMed ID: 12549667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast hydropyrolysis of biomass Conversion: A comparative review.
    Oh S; Lee J; Lam SS; Kwon EE; Ha JM; Tsang DCW; Ok YS; Chen WH; Park YK
    Bioresour Technol; 2021 Dec; 342():126067. PubMed ID: 34601023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling hydropyrolysis and vapor-phase catalytic hydrotreatment to produce biomethane from pine sawdust.
    Wang J; Jiang J; Meng X; Ragauskas AJ
    Bioresour Technol; 2023 Oct; 386():129472. PubMed ID: 37423544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres.
    Williams PT; Brindle AJ
    Environ Technol; 2003 Jul; 24(7):921-9. PubMed ID: 12916844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polystyrene Waste Thermochemical Hydrogenation to Ethylbenzene by a N-Bridged Co, Ni Dual-Atom Catalyst.
    Li R; Zhang Z; Liang X; Shen J; Wang J; Sun W; Wang D; Jiang J; Li Y
    J Am Chem Soc; 2023 Jul; 145(29):16218-16227. PubMed ID: 37438261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation of Ethylbenzene Over Ru/
    Oh SK; Ku H; Han GB; Jeong B; Park YK; Jeon JK
    J Nanosci Nanotechnol; 2021 Jul; 21(7):4116-4120. PubMed ID: 33715756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursor prioritization for p-cymene production through synergistic integration of biology and chemistry.
    Lin HH; Mendez-Perez D; Park J; Wang X; Cheng Y; Huo J; Mukhopadhyay A; Lee TS; Shanks BH
    Biotechnol Biofuels Bioprod; 2022 Nov; 15(1):126. PubMed ID: 36397160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated utilization strategy of printed circuit boards and waste tire by fast co-pyrolysis: Value-added products recovery and heteroatoms transformation.
    Ma C; Kumagai S; Saito Y; Kameda T; Yoshioka T
    J Hazard Mater; 2022 May; 430():128420. PubMed ID: 35149505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.
    Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F
    ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.
    Inoue K; Kawamoto K
    Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic hydropyrolysis of microalgae: influence of operating variables on the formation and composition of bio-oil.
    Chang Z; Duan P; Xu Y
    Bioresour Technol; 2015 May; 184():349-354. PubMed ID: 25160747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.