BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38072356)

  • 1. Engineering Yarrowia lipolytica for sustainable ricinoleic acid production: A pathway to free fatty acid synthesis.
    Park K; Hahn JS
    Metab Eng; 2024 Jan; 81():197-209. PubMed ID: 38072356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica.
    Beopoulos A; Verbeke J; Bordes F; Guicherd M; Bressy M; Marty A; Nicaud JM
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):251-62. PubMed ID: 24136468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous Synthesis and Secretion of Ricinoleic Acid in
    Chatterjee M; Patel JB; Stober ST; Zhang X
    ACS Synth Biol; 2022 Mar; 11(3):1178-1185. PubMed ID: 35157794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant.
    Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E
    Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm.
    Tian B; Sun M; Jayawardana K; Wu D; Chen G
    Lipids; 2020 Sep; 55(5):537-548. PubMed ID: 32115716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.
    Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q
    ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism.
    Yuzbasheva EY; Mostova EB; Andreeva NI; Yuzbashev TV; Fedorov AS; Konova IA; Sineoky SP
    Biotechnol Bioeng; 2018 Feb; 115(2):433-443. PubMed ID: 28832949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate.
    Mavraganis I; Meesapyodsuk D; Vrinten P; Smith M; Qiu X
    Appl Environ Microbiol; 2010 Feb; 76(4):1135-42. PubMed ID: 20023082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the Lipid and Fatty Acid Metabolism in
    Wang K; Shi TQ; Wang J; Wei P; Ledesma-Amaro R; Ji XJ
    ACS Synth Biol; 2022 Apr; 11(4):1542-1554. PubMed ID: 35311250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe.
    Holic R; Yazawa H; Kumagai H; Uemura H
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):179-87. PubMed ID: 22370951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of ricinoleic acid-containing monoestolide triacylglycerides in an oleaginous diatom, Chaetoceros gracilis.
    Kajikawa M; Abe T; Ifuku K; Furutani KI; Yan D; Okuda T; Ando A; Kishino S; Ogawa J; Fukuzawa H
    Sci Rep; 2016 Nov; 6():36809. PubMed ID: 27830762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.
    Meesapyodsuk D; Chen Y; Ng SH; Chen J; Qiu X
    J Lipid Res; 2015 Nov; 56(11):2102-9. PubMed ID: 26323290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil.
    Ng TK; Yu AQ; Ling H; Pratomo Juwono NK; Choi WJ; Leong SSJ; Chang MW
    J Biosci Bioeng; 2020 Jan; 129(1):31-40. PubMed ID: 31320262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering.
    Rigouin C; Croux C; Borsenberger V; Ben Khaled M; Chardot T; Marty A; Bordes F
    Microb Cell Fact; 2018 Sep; 17(1):142. PubMed ID: 30200978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot.
    Wei LJ; Ma YY; Cheng BQ; Gao Q; Hua Q
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8561-8573. PubMed ID: 34661706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing cellulolytic
    Guo ZP; Robin J; Duquesne S; O'Donohue MJ; Marty A; Bordes F
    Biotechnol Biofuels; 2018; 11():141. PubMed ID: 29785208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean.
    Broun P; Somerville C
    Plant Physiol; 1997 Mar; 113(3):933-42. PubMed ID: 9085577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica.
    Yu A; Zhao Y; Li J; Li S; Pang Y; Zhao Y; Zhang C; Xiao D
    Microbiologyopen; 2020 Jul; 9(7):e1051. PubMed ID: 32342649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secretory production of ricinoleic acid in fission yeast Schizosaccharomyces pombe.
    Yazawa H; Kumagai H; Uemura H
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8663-71. PubMed ID: 23820557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase.
    Lin JT; Woodruff CL; Lagouche OJ; McKeon TA; Stafford AE; Goodrich-Tanrikulu M; Singleton JA; Haney CA
    Lipids; 1998 Jan; 33(1):59-69. PubMed ID: 9470174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.