These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38072453)

  • 21. Neutrino signals from the formation of a black hole: A probe of the equation of state of dense matter.
    Sumiyoshi K; Yamada S; Suzuki H; Chiba S
    Phys Rev Lett; 2006 Sep; 97(9):091101. PubMed ID: 17026352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gravitational clustering of cosmic relic neutrinos in the Milky Way.
    Zhang J; Zhang X
    Nat Commun; 2018 May; 9(1):1833. PubMed ID: 29743481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High energy neutrinos from gamma-ray bursts with precursor supernovae.
    Razzaque S; Mészáros P; Waxman E
    Phys Rev Lett; 2003 Jun; 90(24):241103. PubMed ID: 12857183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay.
    Ge SF; Kong CF; Smirnov AY
    Phys Rev Lett; 2024 Sep; 133(12):121802. PubMed ID: 39373433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collisional Flavor Instabilities of Supernova Neutrinos.
    Johns L
    Phys Rev Lett; 2023 May; 130(19):191001. PubMed ID: 37243645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large Neutrino Secret Interactions Have a Small Impact on Supernovae.
    Fiorillo DFG; Raffelt GG; Vitagliano E
    Phys Rev Lett; 2024 Jan; 132(2):021002. PubMed ID: 38277605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collisional Triggering of Fast Flavor Conversions of Supernova Neutrinos.
    Capozzi F; Dasgupta B; Mirizzi A; Sen M; Sigl G
    Phys Rev Lett; 2019 Mar; 122(9):091101. PubMed ID: 30932530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TeV neutrinos and GeV photons from shock breakout in supernovae.
    Waxman E; Loeb A
    Phys Rev Lett; 2001 Aug; 87(7):071101. PubMed ID: 11497877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Search for supernova relic neutrinos at Super-Kamiokande.
    Malek M; Morii M; Fukuda S; Fukuda Y; Ishitsuka M; Itow Y; Kajita T; Kameda J; Kaneyuki K; Kobayashi K; Koshio Y; Miura M; Moriyama S; Nakahata M; Nakayama S; Namba T; Okada A; Ooyabu T; Saji C; Sakurai N; Shiozawa M; Suzuki Y; Takeuchi H; Takeuchi Y; Totsuka Y; Yamada S; Desai S; Earl M; Kearns E; Messier MD; Stone JL; Sulak LR; Walter CW; Goldhaber M; Barszczak T; Casper D; Gajewski W; Kropp WR; Mine S; Liu DW; Smy MB; Sobel HW; Vagins MR; Gago A; Ganezer KS; Keig WE; Ellsworth RW; Tasaka S; Kibayashi A; Learned JG; Matsuno S; Takemori D; Hayato Y; Ishii T; Kobayashi T; Maruyama T; Nakamura K; Obayashi Y; Oyama Y; Sakuda M; Yoshida M; Kohama M; Iwashita T; Suzuki AT; Ichikawa A; Inagaki T; Kato I; Nakaya T; Nishikawa K; Haines TJ; Dazeley S; Hatakeyama S; Svoboda R; Blaufuss E; Goodman JA; Guillian G; Sullivan GW; Turcan D; Scholberg K; Habig A; Ackermann M; Hill J; Jung CK; Martens K; Mauger C; McGrew C; Sharkey E; Viren B; Yanagisawa C; Toshito T; Mitsuda C; Miyano K; Shibata T; Kajiyama Y; Nagashima Y; Nitta K; Takita M; Kim HI; Kim SB; Yoo J; Okazawa H; Ishizuka T; Etoh M; Gando Y; Hasegawa T; Inoue K; Ishihara K; Shirai J; Suzuki A; Koshiba M; Hatakeyama Y; Ichikawa Y; Koike M; Nishijima K; Ishino H; Nishimura R; Watanabe Y; Kielczewska D; Berns HG; Boyd SC; Stachyra AL; Wilkes RJ;
    Phys Rev Lett; 2003 Feb; 90(6):061101. PubMed ID: 12633283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward Powerful Probes of Neutrino Self-Interactions in Supernovae.
    Chang PW; Esteban I; Beacom JF; Thompson TA; Hirata CM
    Phys Rev Lett; 2023 Aug; 131(7):071002. PubMed ID: 37656847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detecting High-Energy Neutrinos from Galactic Supernovae with ATLAS.
    Wen AY; Argüelles CA; Kheirandish A; Murase K
    Phys Rev Lett; 2024 Feb; 132(6):061001. PubMed ID: 38394588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling.
    Martínez-Pinedo G; Fischer T; Lohs A; Huther L
    Phys Rev Lett; 2012 Dec; 109(25):251104. PubMed ID: 23368446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Invited review article: IceCube: an instrument for neutrino astronomy.
    Halzen F; Klein SR
    Rev Sci Instrum; 2010 Aug; 81(8):081101. PubMed ID: 20815596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra.
    Langanke K; Martínez-Pinedo G; Müller B; Janka HT; Marek A; Hix WR; Juodagalvis A; Sampaio JM
    Phys Rev Lett; 2008 Jan; 100(1):011101. PubMed ID: 18232750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the hadron-quark phase transition in core-collapse supernovae.
    Jakobus P; Müller B; Heger A; Motornenko A; Steinheimer J; Stoecker H
    Mon Not R Astron Soc; 2022 Oct; 516(2):2554-2574. PubMed ID: 36117590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence from stable isotopes and
    Banerjee P; Qian YZ; Heger A; Haxton WC
    Nat Commun; 2016 Nov; 7():13639. PubMed ID: 27873999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstructing supernova-neutrino spectra using low-energy beta beams.
    Jachowicz N; McLaughlin GC
    Phys Rev Lett; 2006 May; 96(17):172301. PubMed ID: 16712290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detectability of supernova neutrinos with an existing proton decay detector.
    Losecco JM
    Science; 1984 Apr; 224(4644):56-8. PubMed ID: 17783522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Particle physics on ice: constraints on neutrino interactions far above the weak scale.
    Anchordoqui LA; Feng JL; Goldberg H
    Phys Rev Lett; 2006 Jan; 96(2):021101. PubMed ID: 16486557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observation of high-energy neutrinos using Cerenkov detectors embedded deep in Antarctic ice.
    Andrés E; Askebjer P; Bai X; Barouch G; Barwick SW; Bay RC; Becker KH; Bergström L; Bertrand D; Bierenbaum D; Biron A; Booth J; Botner O; Bouchta A; Boyce MM; Carius S; Chen A; Chirkin D; Conrad J; Cooley J; Costa CG; Cowen DF; Dailing J; Dalberg E; DeYoung T; Desiati P; Dewulf JP; Doksus P; Edsjö J; Ekström P; Erlandsson B; Feser T; Gaug M; Goldschmidt A; Goobar A; Gray L; Haase H; Hallgren A; Halzen F; Hanson K; Hardtke R; He YD; Hellwig M; Heukenkamp H; Hill GC; Hulth PO; Hundertmark S; Jacobsen J; Kandhadai V; Karle A; Kim J; Koci B; Köpke L; Kowalski M; Leich H; Leuthold M; Lindahl P; Liubarsky I; Loaiza P; Lowder DM; Ludvig J; Madsen J; Marciniewski P; Matis HS; Mihalyi A; Mikolajski T; Miller TC; Minaeva Y; Miocinović P; Mock PC; Morse R; Neunhöffer T; Newcomer FM; Niessen P; Nygren DR; Ogelman H; Pérez de los Heros C; Porrata R; Price PB; Rawlins K; Reed C; Rhode W; Richards A; Richter S; Martino JR; Romenesko P; Ross D; Rubinstein H; Sander HG; Scheider T; Schmidt T; Schneider D; Schneider E; Schwarz R; Silvestri A; Solarz M; Spiczak GM; Spiering C; Starinsky N; Steele D; Steffen P; Stokstad RG; Streicher O; Sun Q; Taboada I; Thollander L; Thon T; Tilav S; Usechak N; Vander Donckt M; Walck C; Weinheimer C; Wiebusch CH; Wischnewski R; Wissing H; Woschnagg K; Wu W; Yodh G; Young S
    Nature; 2001 Mar; 410(6827):441-3. PubMed ID: 11260705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.