BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38072505)

  • 1. Control of movement of underwater swimmers: Animals, simulated animates and swimming robots.
    Gordleeva SY; Kastalskiy IA; Tsybina YA; Ermolaeva AV; Hramov AE; Kazantsev VB
    Phys Life Rev; 2023 Dec; 47():211-244. PubMed ID: 38072505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed feedback control of synchronization patterns: Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by S.Yu. Gordleeva et al.
    Schöll E
    Phys Life Rev; 2024 Jul; 49():112-114. PubMed ID: 38574585
    [No Abstract]   [Full Text] [Related]  

  • 3. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling spinal locomotor circuits for movements in developing zebrafish.
    Roussel Y; Gaudreau SF; Kacer ER; Sengupta M; Bui TV
    Elife; 2021 Sep; 10():. PubMed ID: 34473059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging nonlinear dynamics and physiology: Implications for CPGs and biomimetic robotics. Reply to comments on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots".
    Kastalskiy IA; Gordleeva SY; Hramov AE; Kazantsev VB
    Phys Life Rev; 2024 May; 50():32-34. PubMed ID: 38838497
    [No Abstract]   [Full Text] [Related]  

  • 7. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement control mechanism of underwater swimmers via resonance entrainment of central pattern generators Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by Gordleeva et al.
    Semenov DM; Fradkov AL
    Phys Life Rev; 2024 Jul; 49():95-96. PubMed ID: 38564908
    [No Abstract]   [Full Text] [Related]  

  • 9. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concept of swarming and synchrony in aquatic animal movements: Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by Gordleeva et al.
    Sar GK; Ghosh D
    Phys Life Rev; 2024 Jul; 49():1-3. PubMed ID: 38442457
    [No Abstract]   [Full Text] [Related]  

  • 11. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model.
    Di Russo A; Stanev D; Sabnis A; Danner SM; Ausborn J; Armand S; Ijspeert A
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37757805
    [No Abstract]   [Full Text] [Related]  

  • 12. Central pattern generating networks in insect locomotion.
    Mantziaris C; Bockemühl T; Büschges A
    Dev Neurobiol; 2020 Jan; 80(1-2):16-30. PubMed ID: 32128970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological clockwork underlying adaptive rhythmic movements.
    Iwasaki T; Chen J; Friesen WO
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):978-83. PubMed ID: 24395788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From animal biology to simulated models and back: Comment on "control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by Gordleeva et al.
    Zhao J; Xue L; Mu Y; Ji P
    Phys Life Rev; 2024 Jul; 49():17-18. PubMed ID: 38479308
    [No Abstract]   [Full Text] [Related]  

  • 18. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies.
    Ijspeert AJ; Daley MA
    J Exp Biol; 2023 Aug; 226(15):. PubMed ID: 37565347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
    Dasgupta S; Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():10. PubMed ID: 26441629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.