These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38072505)

  • 21. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
    Dasgupta S; Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():10. PubMed ID: 26441629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation.
    Zhang C; Wang J; Wang W; Xi N; Wang Y; Liu L
    Bioinspir Biomim; 2016 Aug; 11(5):056006. PubMed ID: 27545346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Central pattern generation of locomotion: a review of the evidence.
    MacKay-Lyons M
    Phys Ther; 2002 Jan; 82(1):69-83. PubMed ID: 11784280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central pattern generators and the control of rhythmic movements.
    Marder E; Bucher D
    Curr Biol; 2001 Nov; 11(23):R986-96. PubMed ID: 11728329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of intraspinal sensory neurons in the control of quadrupedal locomotion.
    Gerstmann K; Jurčić N; Blasco E; Kunz S; de Almeida Sassi F; Wanaverbecq N; Zampieri N
    Curr Biol; 2022 Jun; 32(11):2442-2453.e4. PubMed ID: 35512696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
    Kozlov AK; Kardamakis AA; Hellgren Kotaleski J; Grillner S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3591-6. PubMed ID: 24550483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution and development of a central pattern generator for the swimming of a lamprey.
    Ijspeert AJ; Kodjabachian J
    Artif Life; 1999; 5(3):247-69. PubMed ID: 10648954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rotating waves and multistability in locomotion models: Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by S.Yu. Gordleeva, I.A. Kastalskiy, Yu.A. Tsybina, A.V. Ermolaeva, A.E. Hramov, and V.B. Kazantsev.
    Pisarchik AN
    Phys Life Rev; 2024 Jul; 49():4-6. PubMed ID: 38442458
    [No Abstract]   [Full Text] [Related]  

  • 36. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bending continuous structures with SMAs: a novel robotic fish design.
    Rossi C; Colorado J; Coral W; Barrientos A
    Bioinspir Biomim; 2011 Dec; 6(4):045005. PubMed ID: 22126900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.