These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Flocking with discrete symmetry: The two-dimensional active Ising model. Solon AP; Tailleur J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042119. PubMed ID: 26565180 [TBL] [Abstract][Full Text] [Related]
3. Flocking in one dimension: Asters and reversals. Benvegnen B; Chaté H; Krapivsky PL; Tailleur J; Solon A Phys Rev E; 2022 Nov; 106(5-1):054608. PubMed ID: 36559354 [TBL] [Abstract][Full Text] [Related]
4. Flocking with a q-fold discrete symmetry: Band-to-lane transition in the active Potts model. Mangeat M; Chatterjee S; Paul R; Rieger H Phys Rev E; 2020 Oct; 102(4-1):042601. PubMed ID: 33212593 [TBL] [Abstract][Full Text] [Related]
5. Continuous symmetry breaking in a two-dimensional Rydberg array. Chen C; Bornet G; Bintz M; Emperauger G; Leclerc L; Liu VS; Scholl P; Barredo D; Hauschild J; Chatterjee S; Schuler M; Läuchli AM; Zaletel MP; Lahaye T; Yao NY; Browaeys A Nature; 2023 Apr; 616(7958):691-695. PubMed ID: 36848931 [TBL] [Abstract][Full Text] [Related]
6. Energy Cost for Flocking of Active Spins: The Cusped Dissipation Maximum at the Flocking Transition. Yu Q; Tu Y Phys Rev Lett; 2022 Dec; 129(27):278001. PubMed ID: 36638284 [TBL] [Abstract][Full Text] [Related]
7. Active Ising Models of flocking: a field-theoretic approach. Scandolo M; Pausch J; Cates ME Eur Phys J E Soft Matter; 2023 Oct; 46(10):103. PubMed ID: 37882912 [TBL] [Abstract][Full Text] [Related]
8. Ordering kinetics in the active Ising model. Bandyopadhyay S; Chatterjee S; Dutta AK; Karmakar M; Rieger H; Paul R Phys Rev E; 2024 Jun; 109(6-1):064143. PubMed ID: 39020881 [TBL] [Abstract][Full Text] [Related]
10. Topological-distance-dependent transition in flocks with binary interactions. Bhattacherjee B; Mishra S; Manna SS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062134. PubMed ID: 26764659 [TBL] [Abstract][Full Text] [Related]
11. Metastability of Constant-Density Flocks. Besse M; Chaté H; Solon A Phys Rev Lett; 2022 Dec; 129(26):268003. PubMed ID: 36608197 [TBL] [Abstract][Full Text] [Related]
12. Following Your Nose: Autochemotaxis and Other Mechanisms for Spinodal Decomposition in Flocks. Miller M; Toner J Phys Rev Lett; 2024 Mar; 132(12):128301. PubMed ID: 38579229 [TBL] [Abstract][Full Text] [Related]
13. Fluctuations and pattern formation in self-propelled particles. Mishra S; Baskaran A; Marchetti MC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061916. PubMed ID: 20866449 [TBL] [Abstract][Full Text] [Related]
14. Pattern formation in flocking models: A hydrodynamic description. Solon AP; Caussin JB; Bartolo D; Chaté H; Tailleur J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062111. PubMed ID: 26764636 [TBL] [Abstract][Full Text] [Related]
15. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Solon AP; Chaté H; Tailleur J Phys Rev Lett; 2015 Feb; 114(6):068101. PubMed ID: 25723246 [TBL] [Abstract][Full Text] [Related]
20. Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems. Gambetta FM; Carollo F; Marcuzzi M; Garrahan JP; Lesanovsky I Phys Rev Lett; 2019 Jan; 122(1):015701. PubMed ID: 31012672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]