These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38072804)

  • 1. Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy.
    Wen H; Liu Y; Liu S; Peng Z; Wu X; Yuan H; Jiang J; Li B
    Small; 2024 May; 20(18):e2305405. PubMed ID: 38072804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB
    ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
    Sordakis K; Tang C; Vogt LK; Junge H; Dyson PJ; Beller M; Laurenczy G
    Chem Rev; 2018 Jan; 118(2):372-433. PubMed ID: 28985048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Low-Temperature Hydrogen Production from Lignocellulosic Biomass Passing through Formic Acid: Combination of Biomass Hydrolysis/Oxidation and Formic Acid Dehydrogenation.
    Park JH; Jin MH; Lee DW; Lee YJ; Song GS; Park SJ; Namkung H; Song KH; Choi YC
    Environ Sci Technol; 2019 Dec; 53(23):14041-14053. PubMed ID: 31602972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Sustainable Production of Formic Acid.
    Bulushev DA; Ross JRH
    ChemSusChem; 2018 Mar; 11(5):821-836. PubMed ID: 29316342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage.
    Bahuguna A; Sasson Y
    ChemSusChem; 2021 Mar; 14(5):1258-1283. PubMed ID: 33231357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles.
    Alshammari HM; Alotaibi MH; Aldosari OF; Alsolami AS; Alotaibi NA; Alzahrani YA; Alhumaimess MS; Alotaibi RL; El-Hiti GA
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials.
    Sun Q; Wang N; Xu Q; Yu J
    Adv Mater; 2020 Nov; 32(44):e2001818. PubMed ID: 32638425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Formic Acid from Glucose with Simultaneous Conversion of Ag
    He R; Ma T; Cheng J; Jin B; Xu J
    ACS Omega; 2021 May; 6(17):11260-11265. PubMed ID: 34056281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source.
    Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N
    ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photons to Formate-A Review on Photocatalytic Reduction of CO
    Pan H; Heagy MD
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst.
    Takagaki A; Obata W; Ishihara T
    ChemistryOpen; 2021 Oct; 10(10):954-959. PubMed ID: 34236148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach.
    Oregui-Bengoechea M; Gandarias I; Arias PL; Barth T
    ChemSusChem; 2017 Feb; 10(4):754-766. PubMed ID: 27925410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between experiments and simulations for formic acid oxidation.
    Bagger A; Jensen KD; Rashedi M; Luo R; Du J; Zhang D; Pereira IJ; Escudero-Escribano M; Arenz M; Rossmeisl J
    Chem Sci; 2022 Nov; 13(45):13409-13417. PubMed ID: 36507186
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.