These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 38073096)
21. Gut microbiota metabolites as integral mediators in cardiovascular diseases (Review). Zhu Y; Shui X; Liang Z; Huang Z; Qi Y; He Y; Chen C; Luo H; Lei W Int J Mol Med; 2020 Sep; 46(3):936-948. PubMed ID: 32705240 [TBL] [Abstract][Full Text] [Related]
22. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Al Samarraie A; Pichette M; Rousseau G Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982492 [TBL] [Abstract][Full Text] [Related]
23. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. Chen ML; Yi L; Zhang Y; Zhou X; Ran L; Yang J; Zhu JD; Zhang QY; Mi MT mBio; 2016 Apr; 7(2):e02210-15. PubMed ID: 27048804 [TBL] [Abstract][Full Text] [Related]
24. Gut Microbiota in Cardiovascular Health and Disease. Tang WH; Kitai T; Hazen SL Circ Res; 2017 Mar; 120(7):1183-1196. PubMed ID: 28360349 [TBL] [Abstract][Full Text] [Related]
25. Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Sanchez-Gimenez R; Ahmed-Khodja W; Molina Y; Peiró OM; Bonet G; Carrasquer A; Fragkiadakis GA; Bulló M; Bardaji A; Papandreou C Nutrients; 2022 Jun; 14(13):. PubMed ID: 35807835 [TBL] [Abstract][Full Text] [Related]
26. The role of the gut microbiota and bile acids in heart failure: A review. Shi M; Wei J; Yuan H; Li Y; Guo Z Medicine (Baltimore); 2023 Nov; 102(45):e35795. PubMed ID: 37960774 [TBL] [Abstract][Full Text] [Related]
27. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Usman I; Anwar A; Shukla S; Pathak P Cardiovasc Hematol Disord Drug Targets; 2024; 24(1):13-39. PubMed ID: 38879769 [TBL] [Abstract][Full Text] [Related]
28. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis? Cao H; Zhu Y; Hu G; Zhang Q; Zheng L Pharmacol Res; 2023 Jan; 187():106586. PubMed ID: 36460280 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous HS-SPME GC-MS determination of short chain fatty acids, trimethylamine and trimethylamine N-oxide for gut microbiota metabolic profile. Fiori J; Turroni S; Candela M; Brigidi P; Gotti R Talanta; 2018 Nov; 189():573-578. PubMed ID: 30086962 [TBL] [Abstract][Full Text] [Related]
30. Microbiome-Metabolomics Analysis of the Impacts of Wang L; Cao L; Chang Y; Fu Y; Wang Y; Zhang K; Zhang S; Zhang L Microbiol Spectr; 2023 Feb; 11(1):e0217522. PubMed ID: 36533947 [TBL] [Abstract][Full Text] [Related]
31. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Luqman A; Hassan A; Ullah M; Naseem S; Ullah M; Zhang L; Din AU; Ullah K; Ahmad W; Wang G Front Immunol; 2024; 15():1321395. PubMed ID: 38343539 [TBL] [Abstract][Full Text] [Related]
32. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Masse KE; Lu VB Front Endocrinol (Lausanne); 2023; 14():1169624. PubMed ID: 37560311 [TBL] [Abstract][Full Text] [Related]
33. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Stec A; Sikora M; Maciejewska M; Paralusz-Stec K; Michalska M; Sikorska E; Rudnicka L Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834904 [TBL] [Abstract][Full Text] [Related]
34. Diet-related gut microbial metabolites and sensing in hypertension. R Muralitharan R; Marques FZ J Hum Hypertens; 2021 Feb; 35(2):162-169. PubMed ID: 32733062 [TBL] [Abstract][Full Text] [Related]
35. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Busnelli M; Manzini S; Chiesa G Nutrients; 2019 Dec; 12(1):. PubMed ID: 31892152 [TBL] [Abstract][Full Text] [Related]
36. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Ahmad F; Saha P; Singh V; Wahid M; Mandal RK; Nath Mishra B; Fagoonee S; Haque S Food Chem; 2023 Jun; 410():135320. PubMed ID: 36610090 [TBL] [Abstract][Full Text] [Related]
37. Development of an Efficient and Sensitive Chemical Derivatization-Based LC-MS/MS Method for Quantifying Gut Microbiota-Derived Metabolites in Human Plasma and Its Application in Studying Cardiovascular Disease. Liao HY; Wang CY; Lee CH; Kao HL; Wu WK; Kuo CH J Proteome Res; 2021 Jul; 20(7):3508-3518. PubMed ID: 34053222 [TBL] [Abstract][Full Text] [Related]
38. Gut Microbiota in Adipose Tissue Dysfunction Induced Cardiovascular Disease: Role as a Metabolic Organ. Yang X; Zhang X; Yang W; Yu H; He Q; Xu H; Li S; Shang Z; Gao X; Wang Y; Tong Q Front Endocrinol (Lausanne); 2021; 12():749125. PubMed ID: 34552566 [TBL] [Abstract][Full Text] [Related]
39. Gut macrobiotic and its metabolic pathways modulate cardiovascular disease. Zhu J; Lyu J; Zhao R; Liu G; Wang S Front Microbiol; 2023; 14():1272479. PubMed ID: 37822750 [TBL] [Abstract][Full Text] [Related]
40. Dietary Patterns Affect the Gut Microbiome-The Link to Risk of Cardiometabolic Diseases. Tindall AM; Petersen KS; Kris-Etherton PM J Nutr; 2018 Sep; 148(9):1402-1407. PubMed ID: 30184227 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]