These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38073162)

  • 21. Inhibitory mechanisms of Acacia mearnsii extracts on the growth of Microcystis aeruginosa.
    Liu Z; Zhou L; Liu D; Zhu Q; Chen W
    Water Sci Technol; 2015; 71(6):856-61. PubMed ID: 25812094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two different anti-algal control mechanisms in Microcystis aeruginosa induced by robinin or tannin rich plants.
    Gil CS; Eom SH
    Chemosphere; 2023 May; 323():138202. PubMed ID: 36849021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions.
    Zhang Z; Fan X; Peijnenburg WJGM; Zhang M; Sun L; Zhai Y; Yu Q; Wu J; Lu T; Qian H
    J Environ Sci (China); 2021 Jan; 99():1-9. PubMed ID: 33183685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of axenic cyanobacterium and the promoting effect of associated bacterium on axenic cyanobacterium.
    Gao S; Kong Y; Yu J; Miao L; Ji L; Song L; Zeng C
    BMC Biotechnol; 2020 Nov; 20(1):61. PubMed ID: 33256756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microcystins and Microcystis aeruginosa PCC7806 extracts modulate steroidogenesis differentially in the human H295R adrenal model.
    Mallia V; Verhaegen S; Styrishave B; Eriksen GS; Johannsen ML; Ropstad E; Uhlig S
    PLoS One; 2020; 15(12):e0244000. PubMed ID: 33320886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Damage mechanism of calcium peroxide on Microcystis aeruginosa PCC7806 and its potential application.
    Zhang Y; Qiu P; Bi Y; Wan D; Mi W; Tian C; Qiu C; Song G
    Ecotoxicol Environ Saf; 2023 Oct; 264():115466. PubMed ID: 37714037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.
    Penn K; Wang J; Fernando SC; Thompson JR
    ISME J; 2014 Sep; 8(9):1866-78. PubMed ID: 24646695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of In Vitro Endocrine Activities of
    Mallia V; Ivanova L; Eriksen GS; Harper E; Connolly L; Uhlig S
    Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32260386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom.
    Li H; Bhattarai B; Barber M; Goel R
    Environ Sci Technol; 2023 Oct; 57(42):16016-16032. PubMed ID: 37819800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction and resuscitation of the viable but nonculturable state in a cyanobacteria-lysing bacterium isolated from cyanobacterial bloom.
    Chen H; Fu L; Luo L; Lu J; White WL; Hu Z
    Microb Ecol; 2012 Jan; 63(1):64-73. PubMed ID: 21850447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of High-Resolution Pressure Nephelometry To Measure Gas Vesicle Collapse as a Means of Determining Growth and Turgor Changes in Planktonic Cyanobacteria.
    Dyer SW; Needoba JA
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.
    Schmidt KC; Jackrel SL; Smith DJ; Dick GJ; Denef VJ
    Harmful Algae; 2020 Nov; 99():101939. PubMed ID: 33218432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel cyanolytic bacterium, Pseudomonas fluorescens BG-E as a potential biological control agent for freshwater bloom-forming cyanobacteria Pseudanabaena spp.
    Wijesooriya MM; Masakorala K; Widana Gamage SMK
    J Phycol; 2023 Jun; 59(3):570-589. PubMed ID: 36971784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides.
    Geh EN; Ghosh D; McKell M; de la Cruz AA; Stelma G; Bernstein JA
    Environ Health Perspect; 2015 Nov; 123(11):1159-66. PubMed ID: 25902363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact.
    Zeng Y; Wang J; Yang C; Ding M; Hamilton PB; Zhang X; Yang C; Zhnag L; Dai X
    Sci Total Environ; 2021 May; 769():144489. PubMed ID: 33465632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The growth inhibitory effects and non-targeted metabolomic profiling of Microcystis aeruginosa treated by Scenedesmus sp.
    Zhang XL; Zhu QQ; Chen CY; Xie B; Tang BG; Fan MH; Hu QJ; Liao Z; Yan XJ
    Chemosphere; 2023 Oct; 338():139446. PubMed ID: 37423414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of
    Yilimulati M; Zhou L; Shevela D; Zhang S
    Environ Sci Technol; 2022 Jul; 56(13):9683-9692. PubMed ID: 35696645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc.
    Xu K; Juneau P
    Aquat Toxicol; 2016 Jan; 170():251-258. PubMed ID: 26675371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of pilus-like structures and genes in Microcystis aeruginosa PCC7806.
    Nakasugi K; Neilan BA
    Appl Environ Microbiol; 2005 Nov; 71(11):7621-5. PubMed ID: 16269818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterotrophic Bacteria Dominate Catalase Expression during
    Smith DJ; Berry MA; Cory RM; Johengen TH; Kling GW; Davis TW; Dick GJ
    Appl Environ Microbiol; 2022 Jul; 88(14):e0254421. PubMed ID: 35862723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.